Math, asked by abhishekdatta8p3mhiz, 1 year ago

the sum of the Arithmetic progression 34,32,30, ....,10 is

Answers

Answered by Vedant250204
265

Answer:

286

Step-by-step explanation:

PLZ REFER TO THE ATTACHMENT....1

HOPE IT HELPS

PLZ MARK BRAINLIST

Attachments:
Answered by mysticd
169

Answer:

 The \:sum \:of \:the\\ Arithmetic \:progression\\ 34,32,30, ....,10 \:is\:286

Step-by-step explanation:

 Given \:A.P : 34,32,30,...,10

 First\:term (a) = 34\\common \: difference (d) = a_{2}-a_{1}\\=32-34\\=-2

 last \:term (a_{n})=10

\implies a+(n-1)d = 10

\implies 34+(n-1)(-2)=10

\implies (n-1)(-2)=10-34

\implies (n-1)(-2)=-24

\implies n-1=\frac{-24}{-2}

\implies n-1=12

\implies n = 12+1 = 13

Now,\\</p><p>Sum \:of \: n \: terms (S_{n})\\=\frac{n}{2}[2a+(n-1)d]\\=\frac{13}{2}[2\times 34+(13-1)(-2)]\\=\frac{13}{2}[68-24]\\=\frac{13}{2}\times 44\\=13\times 22\\= 286

Therefore,

 The \:sum \:of \:the\\ Arithmetic \:progression\\ 34,32,30, ....,10 \:is\:286

•••♪

Similar questions