Math, asked by krishsaini828, 1 year ago

the sum of the circumference of four small circles of same radius is equal to the circumference of a bigger circle find the ratio of the area of the bigger Circle to that of the smaller circle​

Answers

Answered by ihrishi
7

Step-by-step explanation:

Let the radius of bigger circle be R and that of smaller circles be r as radii of small circles are same.

Therefore,

 \therefore \: Circumference  \: of  \: bigger \:  circle  \\  = 4 \times \: the \: circumference \: of \: a \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: smaller \: circle  \\  \implies \: 2 \pi \: R = 4 \times 2 \pi \: r \\  \implies \: 2 \pi \: R = 8 \pi \: r \\ \implies \:  \frac{R}{r}  =  \frac{8 \pi}{2 \pi}  \\ \implies \:  \frac{R}{r}  =  \frac{4}{1} ....(1) \\  now \: \\  ratio \: of \: areas =  \frac{ \pi \:  {R}^{2} }{\pi \:  {r}^{2}}   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{{R}^{2} }{{r}^{2}} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \frac{{4}^{2} }{{1}^{2}} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{16}{1}   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 16 : 1

Answered by AnIntrovert
11

Four small circle having radius=r

bigger circles radius is=R

Circumference of circle is =2×π×r

4×2πr=2πR

R=4r

Area=area of bigger circle/area of small circle

Area=π×R×R/π×r×r

Area=(R/r)^2(put value of R in given )

=4×4

=16

Similar questions