Math, asked by deepaksoni3168, 11 months ago

The sum of the cubes of two numbers is 793. The sum



of the numbers is 13, then the difference of the two



numbers is:

Answers

Answered by anandkumar57
0

Step-by-step explanation:

The sum of the cubes of two numbers is 793. The sum of the numbers is 13. Then the difference of the two numbers is

1). 7

2). 6

3). 5

4). 8

Answer option 6

Answered by Anonymous
7

Given:

  • The sum of the cubes of two numbers is 793. The sum of the numbers is 13.

To Find

  • The difference of the two numbers is?

Explanation

Let the two numbers be x and y

so as;

  • x³ + y³ = 793
  • x + y = 13

Using Quantities,

 \\ \dag{\red{\boxed{\underline{\sf\large{ (x+y)^3 =  x^3 + y^3 + 3xy(x+y) }}}}} \\

Putting values,

 \colon\implies{\tt{ (x+y)^3 = x^3 + y^3 + 3xy(x+y)}} \\ \\ \\ \colon\implies{\tt{ (13)^3 = 793 + 3xy(13) }} \\ \\ \\ \colon\implies{\tt{ 2197-793 = 3xy(13)}} \\ \\ \\ \colon\implies{\tt{ 1404 = 3xy \times 13 }} \\ \\ \\ \colon\implies{\tt{ 1404 = 39xy }}  \\ \\ \\ \colon\implies{\tt{ xy = \dfrac{ \cancel{1404} }{ \cancel{39} }  }} \\ \\ \\ \colon\implies{\tt{ xy = 36 }} \\

  • Value of xy is 36.

Now, We have to find the Sum of the square of the two numbers:-

  • x² + y² = ?

 \\ \dag{\pink{\underline{\boxed{\sf\large{ (x+y)^2 = x^2 + y^2 + 2xy }}}}} \\

As we know that,

  • x + y = 13
  • xy = 36

Putting values,

 \colon\implies{\tt{ (x+y)^2 = x^2 + y^2 + 2xy }} \\ \\ \\ \colon\implies{\tt{ (13)^2 = x^2 + y^2 + 2 \times 36 }} \\ \\ \\ \colon\implies{\tt{ 169 = x^2 + y^2 + 72 }} \\ \\ \\ \colon\implies{\tt{ 169 - 72 = x^2 + y^2 }} \\ \\ \\ \colon\implies{\tt{ 97 = x^2 + y^2 }} \\

  • So, Value of x² + y² is 97

So, Now We can find the value of difference of two numbers as:-

As We know that,

  • x² + y² = 97
  • xy = 36

We also Know,

 \\ \dag{\purple{\boxed{\underline{\sf\large{ (x-y)^2 = x^2 + y^2 - 2xy }}}}} \\

Putting values Properly,

 \colon\implies{\tt{ (x-y)^2 = x^2 + y^2 - 2xy }} \\ \\ \\ \colon\implies{\tt{ (x-y)^2 = 97 - 2 \times 36 }} \\ \\ \\ \colon\implies{\tt{ (x-y)^2 = 97 - 72 }} \\ \\ \\ \colon\implies{\tt{ (x-y)^2 = 25 }} \\ \\ \\ \colon\implies{\tt{ x-y = \sqrt{25} }} \\ \\ \\ \colon\implies{\boxed{\tt\large\orange{ x-y = 5 }}} \\

Hence,

  • The Value of the difference of two numbers is 5 .
Similar questions