Math, asked by players4635, 9 months ago

The sum of the digit of a 2 digit number is 9. On reversing the digit, the new number formed is less than the original number by 9

Answers

Answered by Anonymous
10

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of digits is 9

  • Reversed number is 9 less than the original number.

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The original number.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let the ten's digit be 'x'

Let the one's digit be 'y'

 \:\:

 \underline{\bold{\texttt{Original number :}}}

 \:\:

\purple\longrightarrow  \sf 10x + y

 \:\:

 \underline{\bold{\texttt{Reversed number :}}}

 \:\:

\purple\longrightarrow  \sf 10y + x

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

 \bf\dashrightarrow x + y = 9 ------(1)

 \:\:

Also,

 \:\:

 \sf \longmapsto 10x + y = 10y + x + 9

 \:\:

 \sf \longmapsto 9x - 9y = 9

 \:\:

 \underline{\bold{\texttt{Dividing the above equation by 9}}}

 \:\:

 \bf \dashrightarrow x - y = 1 -------(2)

 \:\:

 \underline{\bold{\texttt{Adding (1) and (2)}}}

 \:\:

 \sf \longmapsto 2x = 10

 \:\:

 \sf \longmapsto x = \dfrac { 10 } { 2 }

 \:\:

 \sf \dashrightarrow x = 5

 \:\:

 \underline{\bold{\texttt{Putting x = 5 in (1)}}}

 \:\:

 \sf \longmapsto 5 + y = 9

 \:\:

 \bf \dashrightarrow y = 4

 \:\:

 \underline{\bold{\texttt{Original number will be:}}}

 \:\:

\purple\longrightarrow  \bf 10(5) + 4

 \:\:

 \sf \longmapsto 54

 \:\:

\rule{200}5

Answered by nidhirandhawa7
0

Step-by-step explanation:

pls make it brainlest answer

Attachments:
Similar questions