the sum of the digit of a number consisting of three digits is 12 the middle digits is equal to half the sum of the other two if the order of the digits is reverse the number is diminished by 198 find the number
Answers
Answer: 543
Step-by-step explanation:
Let a be the hundreds digit, b be the tens digit and c be the ones digit
Then a+b+c=12
b=12-a-c -------(1)
b=(a+c)/2 --------(2)
100a+10b+c-198=100c+10b+a
99a-99c = 198
99(a-c) = 198
a-c = 2----(3)
From (1) and (2), 12-a-c=(a+c)/2
24-2a-2c=a+c
3a+3c=24
a+c=8-----(4)
(3) + (4) --->
2a = 10
a = 5
(4)-(3)
2c=6
c=3
From (2), b=(5+3)/2 = 4
The number is 543
Answer:
543
Step-by-step explanation:
Let the digits be x, y and z respectively.
So, the number would be 100x + 10y + z.
and the reverse would be 100z + 10y + x
Given sum of digits = x + y + z = 12
Also, Given that, middle digit is equal to half the sum of other two.
⇒ y = (x + z)/2
So, the number becomes
100x + 10y + z
⇒ 100x + 10(x + z)/2 + z
⇒ 100x + 5(x + z) + z
⇒ 100x + 5x + 5z + z
⇒ 105x + 6z
Now, the reverse of the number would be
100z + 10y + x
⇒ 100z + 10(x + z)/2 + x
⇒ 100z + 5x + 5z + x
⇒ 105z + 6x
Now, given that reverse is diminished by 198
⇒ 105x + 6z = 105z + 6x + 198
⇒ 105x - 6x + 6z - 105z = 198
⇒ 99x - 99z = 198
⇒ 99(x - z) = 198
⇒ x - z = 198/99
⇒ x - z = 2
Also, given that x + y + z = 12
but, y = (x + z)/2
⇒ x + (x + z)/2 + z = 12
⇒ 2x/2 + (x + z)/2 + 2z/2 = 12
⇒ (2x + x + z + 2z)/2 = 12
⇒ (3x + 3z)/2 = 12
⇒ 3x + 3z = 12 × 2
⇒ 3(x + z) = 24
⇒ x + z = 24/3
⇒ x + z = 8
And, x - z = 2
so, adding the two equations, we get
2x = 10
⇒ x = 5
and, x + z = 8
⇒ 5 + z = 8
⇒ z = 8 - 5
⇒ z = 3
And, y = (x + z)/2
⇒ y = 8/2
⇒ y = 4
So, the number is 100x + 10y + z
⇒ 100(5) + 10(4) + 3
⇒ 500 + 40 + 3
⇒ 543