the sum of the digit of a number is 11 and the difference between the number and that formed by reversing the digit is 45 find the number
Answers
Answer:let the no. be 10x+y
X+y=11. (I)
10x+y-(10y+X)=45
9x-9y=45
x-y=5. (II)
From (I) and (II) we get
2x=16
x=8
8+y=11
y=3
No. = 8*10+3=83
Answer :-
The required number is 83.
Solution :-
Let the digits of the number be x and y
Sum of digits of a number = 11
⇒ x + y = 11 ---(1)
Number = 10x + y
Number formed when digits are reversed = 10y + x
Given
Difference between a number and number formed when digits are reversed = 45
⇒ 10x + y - (10y + x) = 45
⇒ 10x + y - 10y - x = 45
⇒ 9x - 9y = 45
⇒ 9(x - y) = 45
⇒ x - y = 45/9
⇒ x - y = 5 --(2)
Adding (1) & (2)
⇒ x + y + (x - y) = 11 + 5
⇒ x + y + x - y = 16
⇒ 2x = 16
⇒ x = 16/2
⇒ x = 8
Substitute x = 8 in (1)
⇒ x + y = 11
⇒ 8 + y = 11
⇒ y = 11 - 8
⇒ y = 3
Substitute x = 8, y = 3 in 10x + y to know the number
Number = 10x + y
= 10(8) + 3
= 80 + 3
= 83
Therefore the required number is 83.