Math, asked by mdkamran0786, 1 year ago

the sum of the digit of a two digit no.is 7. if the radius are reversed , the new no. increased by 3 equals 4 times the original no.Find the original no.​

Answers

Answered by Anonymous
159

Correct Question :

The sum of the digit of a two digit no. is 7. Kf the digits are reversed, the new no. increased by 3 equals to 4 times the original no. Find the Original Number.

AnswEr :

Let the digit at unit's place be y and the digit at ten's place be x. Then,

⋆ Original Number will be : (10x + y)

⋆ Reversed Number will be : (10y + x)

⋆ Sum of Digit : (x + y) = 7⠀⠀⠀—eq.( I )

According to the Question Now :

⇒ New Number + 3 = 4 times Old Number

⇒ (10y + x) + 3 = 4(10x + y)

⇒ 10y + x + 3 = 40x + 4y

⇒ 10y - 4y + x - 40x + 3 = 0

⇒ 6y - 39x + 3 = 0

⇒ 3(2y - 13x + 1) = 0

  • Dividing Both term by 3

⇒ 2y - 13x + 1 = 0

⇒ 1 = 13x - 2y

13x - 2y = 3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀—eq.( II )

_________________________________

Multiplying eq.( I ) by 2 and adding in ( II ):

⇝ 2x + 2y = 14

⇝ 13x - 2y = 3

_________________

⇝ 2x + 13x = 14 + 3

⇝ 15x = 15

  • Dividing Both term by 15

x = 1

Putting the Value of x in eq.( I ) :

⇝ x + y = 7

⇝ 1 + y = 7

⇝ y = 7 - 1

y = 6

_________________________________

Original Number Formed will be :

↠ (10x + y)

↠ {(10 × 1) + 6}

↠ (10 + 6)

16

Therefore, Original Number is 16.

━━━━━━━━━━━━━━━━━━━━━━━━

Verification :

⇒ Reversed No. + 3 = (4 × Original No.)

⇒ (10y + x) + 3 = 4 × (10x + y)

⇒ (10 × 6 + 1) + 3 = 4 × (10 × 1 + 6)

⇒ (60 + 1) + 3 = 4 × (10 + 6)

⇒ 61 + 3 = 4 × 16

64 = 64 ⠀⠀⠀⠀⠀⠀Hence, Verified!


Anonymous: Awesome answer keep it up :)
Answered by Anonymous
152

\huge\sf\red{\underline{Appropriate\:Question}}

The sum of the digit of a two digit no.is 7. if the digits are reversed, the new no. increased by 3 equals 4 times the original no. Find the original no.

\bold{\huge{\boxed{\purple{\tt{Answer-}}}}}

Original number = 16

\bold{\huge{\boxed{\pink{\mathfrak{Explanation-}}}}}

Let the tens digit be x and unit digit be y.

Number = 10x + y

After reversing digits,

Number = 10y + x

________________

\bold{\large{\underline{\boxed{\tt{\green{As\:per\:the\:question}}}}}}

Case 1).

The sum of the digit of a two digit no.is 7.

\bold{\blue{\boxed{\large{\sf{x + y = 7\:--->(1)}}}}}

Case 2).

If the digits are reversed, the new no. increased by 3 equals 4 times the original no.

\leadsto \tt{ ( 10y + x ) + 3 = 4 ( 10x + y ) }

\leadsto \tt{10y + x + 3 = 40x + 4y}

\leadsto \tt{10y - 4y + x - 40x = -3}

\leadsto \tt{6y - 39x = -3}

Taking 3 as common,

\leadsto \tt{2y - 13x = -1 }

\leadsto \bold{\large{\boxed{\red{\sf{13x - 2y = 1 \:----> (2)}}}}}

__________________

Multiply equation (1) by 2,

\bold{\pink{\boxed{\large{\sf{2x + 2y = 14\:--->(3)}}}}}

Adding equation (2) and (3),

\leadsto \tt{2x + 2y + 13x - 2y = 14 + 1}

\leadsto \tt{15x = 15}

\leadsto \tt{x\:=\:{\dfrac{15}{15}}}

\leadsto \bold{\large{\boxed{\red{\rm{x\:=\:1}}}}}

Now, put the value of x in equation (3)

\leadsto \tt{2(1) + 2y = 14}

\leadsto \tt{2 + 2y = 14}

\leadsto \tt{2y = 14 - 2}

\leadsto \tt{2y = 12}

\leadsto \leadsto \tt{y\:=\:{\dfrac{12}{2}}}

\leadsto \bold{\large{\boxed{\purple{\rm{y\:=\:6}}}}}

___________________

\bold{\large{\boxed{\boxed{\tt{\red{Ten's\:digit\:=\:x\:=\:1}}}}}}

\bold{\large{\boxed{\boxed{\tt{\red{Unit's\:digit\:=\:y\:=\:6}}}}}}

\bold{\large{\boxed{\boxed{\tt{\red{\therefore{Original\:Number\:=\:10x\:+\:y=\:\:10\:\times\:1\:+\:6\:=\:10\:+\:6\:=\:16}}}}}}}

Similar questions