Math, asked by ramapandey829988, 8 months ago

The sum of the digit of a two-digit number is 12. if the new number formed by reversing the digit is greater than the original number by 54, find the original number. check your solution

Answers

Answered by tyrbylent
1

Answer:

39

Step-by-step explanation:

x + 10y = z ..... (1)

x + y = 12 ..... (2)

y + 10x = z + 54 ..... (3)

x + 10y - z = 0

x + y + 0z = 12

10x + y - z = 54

Δ = \left[\begin{array}{ccc}1&10&-1\\1&1&0\\10&1&-1\end{array}\right] = 18

A_{x} = \left[\begin{array}{ccc}0&10&-1\\12&1&0\\54&1&-1\end{array}\right] = 162

A_{y} = \left[\begin{array}{ccc}1&0&-1\\1&12&0\\10&54&-1\end{array}\right] = 54

A_{z} = \left[\begin{array}{ccc}1&10&0\\1&1&12\\10&1&54\end{array}\right] = 702

x = \frac{A_{x} }{A} = 9

y = \frac{A_{y} }{A} = 3

z = \frac{A_{z} }{A} = 39 is the original number

Check the solution: 39 + 54 = 93

Answered by Anonymous
1

Answer:

jwkwjew

mwkwkwjkwlwjejwojejwowjwjkwowowoowoowow

Similar questions