Math, asked by ranjith92, 1 year ago

the sum of the digit of a two digit number is 3 .if 9 is added to the number the digits are reversed .find the number .

Answers

Answered by Anonymous
5

HELLO!

LeT the two digits be x and y.


x+y = 3 …(1)


10x+y+9 = 10y+x, or

9x=9y=9, or


x-y=1 …(2)


Add (1) and (2)


2x=4 or x = 2,ad so y = 1

So the number is 21.

keep smiling

:)

Answered by sonisiddharth751
4

Answer:

\large\bf\underline\red{Question➡} \\  \\\bf \:the \: sum \: of \:  a \: two \: digit \:  \\\bf number \: is \: 3. \: if \: 9 \: is \: added \: to \:  \\\bf the \: number \: its \: digit \: are \: \\  \bf \: reversed \: .  \: then \: find \: the \:  \\\bf number \:  \\  \\ \large\bf\underline\red{answer➡} \: \\  \\  \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{21}}}} \\  \\ \large\bf\underline\red{solution➡} \\  \\ \sf \: let \: number \: be \: \bf \: x \:\sf and \: \bf \: y \\  \\ \bf\underline{according \: to \: the \: question} \\  \\ \sf \: x + y \:  = 3 \: ......\bf \: eq.(1) \\  \\ \sf 10x + y + 9 = 10y + x \\  \\ \sf 9x - 9y = 9 \\  \\ \sf x - y = 1 \: ......\bf \: eq.(2) \\ \\   \\ \bf\underline{add \: eq.(1) \: and \: (2)} \\  \\ \sf \: x + y \:  = 3 \\ \sf x - y = 1  \\  \\ \sf 2x = 4 \\  \\ \sf x =  \frac{4}{2}  \\  \\ \bf\blue{ x = 2 }\\  \\ \bf\underline{put \: the \: value \: of \: x \: in \: eq.(1)} \\ \bf\underline{we \: get \:➡ } \\  \\ \bf\blue{y = 1} \\  \\ \bf\underline{our \: required \: answer \: is \:➡ }  \\  \\ \large{\boxed{\mathfrak\red{\fcolorbox{magenta}{aqua}{21}}}}

Similar questions