Math, asked by prakashom3546, 10 months ago

the sum of the digit of a two digit number is 5. If the number is 9 more than the number obtained by interchanging the digits. Find the number. ​

Answers

Answered by kavika7535
5

Answer:

23

Step-by-step explanation:

Let xy be the number.

x+y=5

x*10+y+9=10*y+x

that is 9x-9y=-9

or x-y=-1

x+y=5

Adding above two equations

2x=4 ie. x=2

and y=5-x =5-2=3

Therefore number is 23

Adding 9 to 23 gives 32.

Answered by Anonymous
12

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  • The sum of two digits = 5
  • If the number is 9 more than the number obtained by interchanging the digits

{\bf{\blue{\underline{To\:Find:}}}}

  • Number =?

{\bf{\blue{\underline{Now:}}}}

  • Let the ones place digit be = x
  • and 2nd place digit be = y

That's

 : \implies \boxed{\sf{x +y =  5 ....(1) }} \\ \\

By interchanging,

  • 10x + y + 9 = 10y + x
  • 10x - x = 10y -y -9
  • 9x - 9y = -9

 : \implies \boxed{\sf{x -y =  -1....(2) }} \\ \\

________________________________________

From (1),

 : \implies{\sf{x  =  5 - y ....(3) }} \\ \\

Put value of x in eq (2),

 : \implies{\sf{  5 - y  - y = -1}} \\ \\

 : \implies{\sf{  5 - 2y = -1}} \\ \\

 : \implies{\sf{  - 2y= -1-5}} \\ \\

 : \implies{\sf{  - 2y= -6}} \\ \\

 : \implies{\sf{  y=  \frac{ - 6}{ - 2} }} \\ \\

 : \implies \boxed{\sf{  y=  3 }} \\ \\

_________________________________________

Now put the value of y in eq (3),

 : \implies {\sf{  x = 5 - 3 }} \\ \\

 : \implies \boxed{\sf{  x=  2}} \\ \\

Therefore the two digit number is 32.

Similar questions