Math, asked by vineelav5856, 10 months ago

The sum of the digit of a two digit number is 9.The number obtained by reversing the digit is 9 less than the original number. Find the number.

Answers

Answered by mddilshad11ab
108

\sf\large\underline{Let:}

  • \rm{The\: ones\: digit=x}
  • \rm{The\: tens\: digit=y}
  • \rm{The\: Number=10y+x}

\sf\large\underline{To\: Find:}

  • \rm{The\: Number=?}

\sf\large\underline{Solution:}

\sf\underline{Given,\:in\: case\:1:}

\rm{\implies Sum\:of\:2\: digits=9}

\rm{\implies x+y=9}

\rm\purple{\implies x+y=9------(i)}

\sf\underline{Given,\:in\: case\:1:}

\rm{The\:number\:obtained\:by\:reversing\:the\:digit\:is\:9\:less\:than\: the \:original \:number}

\rm{\implies 10y+x-9=10x+y}

\rm{\implies 10x-x+y-10y=-9}

\rm{\implies 9x-9y=-9}

  • Dividing by 9 on both sides

\rm\purple{\implies x-y=-1------(ii)}

  • Now, solving equation 1 and 2 here]

\rm{\implies x+y=9}

\rm{\implies x-y=-1}

  • Now, adding equation here]

\rm{\implies 2x=8}

\rm\red{\implies x=4}

  • Putting the value of x=4 in eq 1]

\rm{\implies x+y=9}

\rm{\implies 4+y=9}

\rm{\implies y=9-4}

\rm\red{\implies y=5}

\sf\large{Hence,}

\rm{\implies The\: Number=10y+x}

\rm{\implies The\: Number=10\times5+4}

\rm{\implies The\: Number=50+4}

\rm\purple{\implies The\: Number=54}

Answered by nigaranjum18
20

Question:

The sum of the digit of a two digit number is 9.The number obtained by reversing the digit is 9 less than the original number. Find the number.

  • suppose that the number=10y+x

By solving we get

The value of ones digit=4

The value of ten's digit=5

  • Now substitute value

=>10*5+4

=>50+4

=>54

Therefore, the orfinal number is 54

Similar questions