The sum of the digit of a two digit number is 9 the
number is 6 times the unit digit . Find the number
Answers
Answered by
9
Hello...
Here is your answer...
Let t = the tens digit, u = the unitis digit, t + u = 9
Solve t by adding -u to each side.
t = 9 - u
value of number is 10t + u.
(10t + u) = 6u
Substitute (9 - u) for t
10(9 - u) + u = 6u
90 - 10u + u = 6u
90 - 9u = 6u
add 9u
90 = 15u
divide side by 15
6 = u
t+u = 9
t + 6 = 9
add -6
t = 3
t+u = 9, 3+u = 9 and u = 6
number is 36
Here is your answer...
Let t = the tens digit, u = the unitis digit, t + u = 9
Solve t by adding -u to each side.
t = 9 - u
value of number is 10t + u.
(10t + u) = 6u
Substitute (9 - u) for t
10(9 - u) + u = 6u
90 - 10u + u = 6u
90 - 9u = 6u
add 9u
90 = 15u
divide side by 15
6 = u
t+u = 9
t + 6 = 9
add -6
t = 3
t+u = 9, 3+u = 9 and u = 6
number is 36
Answered by
2
Lets assume unit digit be = x
And assume Tenth digit be = y
So,
=> The number = 10y + x
Given:-
=> x + y = 9
x = 9 - y ........ (1)
=> 10y + x = 6x
10y = 6x-x
10y = 5x
y = 5x / 10 ......... (2)
=> Substituting (1) in (2)
y = 5 ( 9 - y) / 10
y = 45 - 5y / 10
10y = 45 - 5y
10y + 5y = 45
15y = 45
y = 45/15
y = 3
""""""""""""""""""""""""
So,
x = 9 - y
x = 9 - 3
x = 6
""""""""""""
=> Therefore,
Number = 10y + x
= 10 ( 3 ) + 6
= 30 + 6
= 36
""""""""""""
So the required number is 36
""""""""""""""""""""""""""""""""""""""""""
And assume Tenth digit be = y
So,
=> The number = 10y + x
Given:-
=> x + y = 9
x = 9 - y ........ (1)
=> 10y + x = 6x
10y = 6x-x
10y = 5x
y = 5x / 10 ......... (2)
=> Substituting (1) in (2)
y = 5 ( 9 - y) / 10
y = 45 - 5y / 10
10y = 45 - 5y
10y + 5y = 45
15y = 45
y = 45/15
y = 3
""""""""""""""""""""""""
So,
x = 9 - y
x = 9 - 3
x = 6
""""""""""""
=> Therefore,
Number = 10y + x
= 10 ( 3 ) + 6
= 30 + 6
= 36
""""""""""""
So the required number is 36
""""""""""""""""""""""""""""""""""""""""""
Similar questions