Math, asked by aditigupta4, 1 year ago

the sum of the digit of the two digit number is 7 the number formed by reversing the digit digits is 45 more than the original number find the original number​

Answers

Answered by Sauron
15

\mathfrak{\large{\underline{\underline{Answer :-}}}}

The Original Number is 61.

\mathfrak{\large{\underline{\underline{Explanation :-}}}}

\text{\underline{\underline{\purple{Given :}}}}

Sum of the two digits of the number = 7

The number formed by reversing the digits is : 45 more than the original number find the original number.

\text{\underline{\underline{\purple{To Find :}}}}

The number

\text{\underline{\underline{\purple{Solution :}}}}

In the Original Number ;

Consider the digit at -

  • Units place as x
  • Tens place as 10(7 - x)

Original Number = 10(7 - x) + x

\tt{\longrightarrow} 70 - 10x + x

\tt{\longrightarrow} 70 - 9x ...........[ 1 ]

Number after reversing the digits ;

  • Tens Place will be 10(x)
  • Units Place will be (7 - x)

Reversed Number = 10x + 7 - x

\tt{\longrightarrow} 9x + 7 ...........[ 2 ]

\rule{300}{1.5}

As Given in the Question ;

The Number obtained by reversing the digits is 45 more than the original number.

  • Original Number = 70 - 9x
  • Reversed Number = 9x + 7

\boxed{\sf{70-9x=(9x+7)+45}}

\tt{\longrightarrow} \: 70 - 9x = 9x + 7 + 45

\tt{\longrightarrow} \: 70 - 9x = 9x +52

\tt{\longrightarrow} \: 70  - 52 = 9x + 9x

\tt{\longrightarrow} \: 18x = 18

\tt{\longrightarrow} \: x =  \dfrac{18}{18}

\tt{\longrightarrow} \: x =1

The Units place is 1

\rule{300}{1.5}

Value of 10(7 - x)

\tt{\longrightarrow} \: 10(7 - 1)

\tt{\longrightarrow} \: 70 - 10

\tt{\longrightarrow} \: 60

\rule{300}{1.5}

The Number =

\tt{\longrightarrow} \: 60 + 1

\tt{\longrightarrow} \: 61

\therefore The Original Number is 61.

\rule{300}{1.5}

\mathfrak{\large{\underline{\underline{Verification :-}}}}

The Original Number is 61 and Reversed Number is 16. If their difference is 45, then the answer is Correct.

\tt{\longrightarrow} \: 61 - 16 = 45

\tt{\longrightarrow} \: 45 = 45

\therefore The Original Number is 61.

Answered by Anonymous
8

Let the ones digit = x

Then the tens digit = 7-x

The number = (7-x)10+x

According to question,

x*10+(7-x) = (7-x)10+x+45

10x+7-x = 70-10x+x+45

9x+7 = 115-9x

18x = 108

x = 108/18 = 6

So , the original number = (7-x)10+x

= (7-6)10+6

= 16

And the reversed number = 61

So , the original number so required = 16.

The above method used is from the topic - "Linear Equations in one variable".

Similar questions