Math, asked by NabihaAntara05, 9 months ago

The sum of the digits in a two digit number is 14 . The number itself is 2 greater than 11 times the tens digit .Then , what is the number ?

Answers

Answered by MяƖиνιѕιвʟє
94

Gɪᴠᴇɴ :-

The sum of the digits in a two digit number is 14 . The number itself is 2 greater than 11 times the tens digit .

ᴛᴏ ғɪɴᴅ :-

  • Number

sᴏʟᴜᴛɪᴏɴ :-

Let the tens place digit be x and ones place digit be y

then,

According to 1st condition :-

  • Ones place digit + Tens place digit = 14

  • x + y = 14

  • x = 14 - y. ---(1)

According to 2nd Condition :-

  • Number = 11 × Tens place digit + 2

(10x + y) = 11 × x + 2

10x - 11x + y = 2

-x + y = 2

x = y - 2. ----(2)

From (1) and (2) , we get,

14 - y = y - 2

14 + 2 = y + y

2y = 16

y = 16/2

y = 8

Put y = 8 in (1) , we get,

x = 14 - y

x = 14 - 8

x = 6

Hence,

  • Tens place digit = x = 6
  • Ones place digit = y = 8

Therefore,

  • Number = (10x + y) = 68
Answered by Anonymous
18

S O L U T I O N :

Let the ten's digit number be r

Let the one's digit number be m

\boxed{\bf{The\:original\:number=10r+m}}}}}\\\boxed{\bf{The\:reversed\:number=10m+r}}}}}

A/q

\longrightarrow\rm{r+m=14}\\\\\longrightarrow\rm{m=14-r....................(1)}

&

\longrightarrow\rm{10r+m=2+11r}\\\\\longrightarrow\rm{10r-11r=2-m}\\\\\longrightarrow\rm{-r=2-m}\\\\\longrightarrow\rm{-r=2-(14-r)\:\:\:[from(1)]}\\\\\longrightarrow\rm{-r=2-14+r}\\\\\longrightarrow\rm{-r-r=-12}\\\\\longrightarrow\rm{-2r=-12}\\\\\longrightarrow\rm{r=\cancel{-12/-2}}\\\\\longrightarrow\bf{r=6}

Putting the value of r in equation (1),we get;

\longrightarrow\rm{m=14-6}\\\\\longrightarrow\bf{m=8}

Thus;

\bigstar\:\underbrace{\sf{The\:number\:(10r+m)=[10(6)+8]=[60+8]=\boxed{\bf{68}}}}}}}

Similar questions