Math, asked by kamalpreetkaur43822, 8 months ago

The sum of the digits of 2 digit number is 11. The number obtained interchanging the digits exceeds the original number by 27. Find the number​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
10

\displaystyle\large\underline{\sf\red{Given}}

✭ Sum of the digits of a two digit number is 11

✭ The Number obtained on interchanging the digits is 27 more than the original number

\displaystyle\large\underline{\sf\blue{To \ Find}}

◈ The original number?

\displaystyle\large\underline{\sf\gray{Solution}}

So here let the original number be

  • 10x+y

Then on interchanging the digits the number becomes,

  • 10y+x

━━━━━━━━━

\underline{\bigstar\:\textsf{According to the given Question :}}

Sum of digits of the original number is 11,so,

\displaystyle\sf x+y = 11\:\:\:-eq(1)

Also the new Number is 27 more than the original number,

\displaystyle\sf 10x+y+27 = 10y+x

\displaystyle\sf 10x-x+y-10y = -27

\displaystyle\sf 9x-9y = 27

\displaystyle\sf 9(x-y) = -27

\displaystyle\sf x-y = \dfrac{-27}{9}

\displaystyle\sf -x+y = 3\:\:\: -eq(2)

On subtracting eq(2) from eq(1)

»» \displaystyle\sf (x+y)-(-x+y) = 11-3

»» \displaystyle\sf x+y+x-y = 8

»» \displaystyle\sf 2x = 8

»» \displaystyle\sf x = \dfrac{8}{2}

»» \displaystyle\sf \orange{x = 4}

Substituting the value of x in eq(1)

›› \displaystyle\sf x+y = 11

›› \displaystyle\sf 4+y = 11

›› \displaystyle\sf y = 11-4

›› \displaystyle\sf \pink{y = 7}

\displaystyle\therefore\:\underline{\sf The \ Number \ will \ be \ 47}

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
10

Answer:

\sf{The \ number \ is \ 47.}

Given:

\sf{\leadsto{The \ sum \ of \ digits \ of \ a \ two \ digit}}

\sf{number \ is \ 11.}

\sf{\leadsto{The \ number \ obtained \ by \ interchanging}}

\sf{the \ digits \ exceed \ the \ original \ number}

\sf{by \ 27.}

To find:

\sf{The \ number.}

Solution:

\sf{Let \ ten's \ place \ of \ a \ two \ digit \ number}

</p><p>\sf{be \ x \ and \ unit's \ place \ be \ y.}</p><p>

\sf{According \ to \ the \ first \ condition.}

\sf{x+y=11}...(1)

\sf{Original \ number=10x+y}

\sf{Number \ with \ reversed \ digits=10y+x} \\ </p><p>\sf{According \ to \ the \ second \  condition.} \\ </p><p>\sf{10y+x=10x+y+27}

\sf{\therefore{-9x+9y=27}} \\ </p><p></p><p>\sf{\therefore{9(-x+y)=27}} \\ </p><p></p><p>\sf{\therefore{-x+y=3...(2)}} \\ </p><p></p><p>\sf{Adding \ equations \ (1) \ and \ (2), \ we \ get}</p><p>\sf{x+y=11}</p><p>

</p><p></p><p>\sf{-x+y=3}</p><p>

_______________

\sf{2y=14} \\  \\ </p><p></p><p>\sf{\therefore{y=\dfrac{14}{2}}}</p><p>

\boxed{\sf{\therefore{y=7}}}

\sf{Substitute \ y=7 \ in \ equation (1), \ we \ get} \\ </p><p>\sf{x+7=11} \\ </p><p></p><p>\boxed{\sf{\therefore{x=4}}}

\sf{Original \ number=10x+y=10(4)+7=47}

\sf\pink{\tt{\therefore{The \ number \ is \ 47.}}}

Similar questions