Hindi, asked by sohan7761, 9 months ago

The sum of the digits of a 2-digit number is 11. The number obtained by
interchanging the digits exceeds the original number by 27. Find the number.​

Answers

Answered by Anonymous
14

Answer:

\sf{The \ number \ is \ 47.}

Given:

\sf{\leadsto{The \ sum \ of \ digits \ of \ a \ two \ digit}}

\sf{number \ is \ 11.}

\sf{\leadsto{The \ number \ obtained \ by \ interchanging}}

\sf{the \ digits \ exceed \ the \ original \ number}

\sf{by \ 27.}

To find:

\sf{The \ number.}

Solution:

\sf{Let \ ten's \ place \ of \ a \ two \ digit \ number}

\sf{be \ x \ and \ unit's \ place \ be \ y.}

\sf{According \ to \ the \ first \ condition.}

\sf{x+y=11...(1)}

\sf{Original \ number=10x+y}

\sf{Number \ with \ reversed \ digits=10y+x}

\sf{According \ to \ the \ second \ condition.}

\sf{10y+x=10x+y+27}

\sf{\therefore{-9x+9y=27}}

\sf{\therefore{9(-x+y)=27}}

\sf{\therefore{-x+y=3...(2)}}

\sf{Adding \ equations \ (1) \ and \ (2), \ we \ get}

\sf{x+y=11}

\sf{+}

\sf{-x+y=3}

_______________

\sf{2y=14}

\sf{\therefore{y=\dfrac{14}{2}}}

\boxed{\sf{\therefore{y=7}}}

\sf{Substitute \ y=7 \ in \ equation (1), \ we \ get}

\sf{x+7=11}

\boxed{\sf{\therefore{x=4}}}

\sf{Original \ number=10x+y=10(4)+7=47}

\sf\purple{\tt{\therefore{The \ number \ is \ 47.}}}

Similar questions