Math, asked by shristimishra974, 1 year ago

The sum of the digits of a 2 digit number is 12. The given number exceeds the number obtained by interchanging the digits by 36. Find the given number

Answers

Answered by SKD11
2
ans 84, sum 8+4=12 interchange 48
84-48=36
Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
8

\huge\sf\pink{Answer}

☞ Number = 84

\rule{110}1

\huge\sf\blue{Given}

✭ A number consists of 2 digits. The sum of its digits is 12

✭ The number obtained by interchanging the digits is 36 less than the given number

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The Number?

\rule{110}1

\huge\sf\purple{Steps}

Case 1

Let the number be Number = 10x + y

\leadsto\sf{x + y = 12...1)\qquad-eq(1)}

Case 2

➢ Number obtained on reversing the digits = 10y + x

➢ Number obtained by reversing the digits = Original number - 36

\sf{\dashrightarrow 10y + x = 10x + y - 36}

\sf{\dashrightarrow 36 = 10x + y -(10y + x)}

\sf{\dashrightarrow 36 = 10x + y - 10y - x }

\sf{\dashrightarrow 36 = 9x - 9y }

On dividing both sides by 9

\sf{\leadsto x - y = 4\qquad-eq(2)}

\sf{\leadsto x = 4 + y }

Put the value of x from eq(2) in eq(1)

\sf{\twoheadrightarrow (4+y) + y = 12}

\sf{\twoheadrightarrow 4 + 2y = 12 }

\sf{\twoheadrightarrow 2y = 12-4}

\sf{\twoheadrightarrow 2y = 8 }

\sf{\twoheadrightarrow y = \dfrac{8}{2}}

\sf{\orange{\twoheadrightarrow y = 4 }}

Put the value of y in eq(2)

\sf{\rightarrowtail x - 4 = 4 }

\sf{\rightarrowtail x = 4 + 4 }

\sf{\orange{\rightarrowtail x = 8}}

Hence now,

➝ Number = 10x + y

➝ Number = 10(8) + 4

➝ Number = 80 + 4

\sf\red{Number = 84}

\rule{170}3

Similar questions