Math, asked by akshit091, 4 months ago

The sum of the digits of a 2-digit number is 12. The number is 6 times the unit digit.

Answers

Answered by Yuseong
23

Given Question:

The sum of the digits of a 2-digit number is 12. The number is 6 times the unit digit.

Required Solution:

{\boxed {\huge {\bf {\pink { Answer  \leadsto \purple{48} }}}}}

How?

 {\underline {\underline {\rm { Given: } }}}

•The sum of the digits of a 2-digit number is 12.

•The number is 6 times the units digit.

 {\underline {\underline {\rm { To \: Find:} }}}

•The original number.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 {\underline {\underline {\rm { Calculation:} }}}

Let us assume the number at tens place be a and number at unit place be b.

So, the original number will become =  \sf { 10a + b }

Now according to the question:

 \sf { a + b = 12 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { b = 12 - a } ................(i) [/tex]

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also,

 \sf { 10a + b = 6b }................(ii)

Substituting values of b from equation (i)

 \sf { 10a + b = 6b  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 10a + 12-a = 6(12-a)  }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 9a + 12 =  72-6a }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 9a + 6a =  72-12 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 15a =  60 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { a =  \dfrac{60}{15} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { a =  4 }  \red { \bigstar }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \therefore From equation (i),

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { b = 12- a}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { b = 12- 4}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { b = 8}  \red { \bigstar }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, the original number =  \sf { 10a + b }

 \sf { 10(4) +8}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 40 +8}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { 48}  \green { \bigstar }

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \therefore The original number is 48.

____________________________________

Answered by starbumatay45
1

Answer:

yes may sagot na.............

Similar questions