Math, asked by v08238aashna, 10 months ago

the sum of the digits of a 2 digit number is 5. the number formed by reversing the digits is 9 less than the original number. find the original number

Answers

Answered by amitkumar44481
5

AnsWer :

32.

Solution :

Let the tenth place be x

and unit place be y

  • Original number Of two digit number be 10x + y.
  • Reversing number Of two digit number be 10y + x

Case 1.

The sum of the digits of a 2-digit number is 5.

  • X + Y = 5.

 \tt\dagger \:  \:  \:  \:  \:  \: x + y = 5. \:  \:  \:  \:  \:  - (1) \\

\rule{90}1

Case 2.

When The number formed by reversing the digits is 9 less than the original number.

  • 10x + y -9 = 10y + x.

 \tt \dagger \:  \:  \:  \:  \: 10x + y -9 = 10y  + x \:  \:  \:  \:  \:  - (2)

\rule{90}1

Taking Equation, ( 2 )

 \tt \longmapsto 10x + y - 9 = 10y + x.

 \tt\longmapsto 10x  - x  = 10y  - y + 9.

 \tt\longmapsto 9x - 9y = 9.

 \tt\longmapsto x - y = 1. \:  \:  \:  \:  \:  - (3)

\rule{90}1

Adding Equation ( 1 ) and ( 3 )

\begin{tabular}{ c c c c c }x & + &  y &  =  & 5 & \\ x & - & y & = & 1  & \\ \cline{1-5}2x &   &   &  = & 6 & \cline{1-5} \end{tabular}

 \tt\longmapsto x =  \dfrac{6}{2}

 \tt\longmapsto x = 3.

Now, Putting the value of x in Equation ( 1 ) We get.

 \tt\longmapsto x + y = 5.

 \tt\longmapsto 3 + y = 5.

 \tt\longmapsto y = 5 - 3.

 \tt\longmapsto y = 2.

\rule{90}1

\tt \red\bigstar\: Original \: number\begin{cases} \sf{ 10x + y} \\ \sf{ 10(3) + 2 } \\ \sf{ 32 }\end{cases}

\tt\red\bigstar\: Reversing \: number\begin{cases} \sf{ 10x + y} \\ \sf{ 10(2) + 3 } \\ \sf{ 23 }\end{cases}

Therefore, Our Original number become 32.

Answered by anshi60
16

Question :-

The sum of the digits of a 2 digit number is 5. the number formed by reversing the digits is 9 less than the original number. find the original number..

SoLuTiOn :-

Let the unit digit be x .

Then , the tens digit be 5-x .

Original number = 10(tens digit) + unit digit

= 10(5-x) + x

= 50-10x + x

= 50 - 9x

After interchanging

Unit digit be 5- x

Tens digit be x.

New number = 10 × x + 5 - x

= 9x + 5

According to question

=> 9x + 5 + 9 = 50 - 9x

=> 9x + 14 = 50 - 9x

=> 9x + 9x = 50 - 14

=> 18x = 36

=> x = 2

Unit digit = 2

Tens digit = 5 - 2 = 3

So , Original number = 32

Similar questions