Math, asked by babitaupadhyay2018, 1 year ago

The sum of the digits of a 2-
digit number is 7. If the digits
are reversed the new number increased
by 3 less than 4 times the original
number. Find the origind number.​

Answers

Answered by Anonymous
72

Answer :-

The original number is 16.

Solution :-

Let the digits of the two digit number be x and y

Sum of the digits of a two digit number = 7

⇒ x + y = 7

⇒ x = 7 - x --(1)

Original number = 10x + y

New number when digits are reversed = 10y + x

According to the question

⇒ 10y + x = 4(10x + y) - 3

⇒ 10y + x = 40x + 4y - 3

⇒ 3 = 40x + 4y - 10y - x

⇒ 3 = 39x - 6y

⇒ 3 = 3(13x - 2y)

⇒ 3/3 = 13x - 2y

⇒ 1 = 13x - 2y ---(2)

Substitute (1) in (2)

⇒ 1 = 13(7 - y) - 2y

⇒ 1 = 91 - 13y - 2y

⇒ 1 = 91 - 15y

⇒ 15y = 91 - 1

⇒ 15y = 90

⇒ y = 90/15

⇒ y = 6

Substitute y = 6 in (1)

⇒ x = 7 - y

⇒ x = 7 - 6

⇒ x = 1

Original number = 10x + y = 10(1) + 6 = 10 + 6 = 16

Therefore the original number is 16.


Anonymous: Awesome ; )
Anonymous: Thanks
Answered by Darvince
73

Answer:

The Original Number is 16.

Step-by-step explanation:

Gívєn -

Sum of the Digits = 7

The Number with Reversed Digits is 3 less than the 4 times of Original Number

Tσ fínd -

The Original Number

Sσlutíσn -

Let the digits be -

  • Units Place = a
  • Tens Place = b

The original number = 10a + b

Sum of digits--> 7

\sf{\implies} \: a + b = 7 \: ......(1)

\rule{300}{1.5}

According to the Question -

The Number with Reversed Digits is 3 less than the 4 times of Original Number

\sf{\implies} \: 10b + a = 4(10a + b) - 3

\sf{\implies} \: 39a - 6b = 3

\sf{\implies} \: 13a - 2b = 1 \: .......(2)

\rule{300}{1.5}

Multiply Equation (1) by (2)

\sf{\implies} \:2a + 2b = 14 \: ......(3)

\rule{300}{1.5}

Add the Equation (2) and (3)

\sf{\implies} \:15a = 5

\sf{\implies} \:a = 1 \\ \sf{\implies} \:b = 6

\rule{300}{1.5}

The Original Number =

\sf{\implies} \:10a + b = 10(1) + 6 \\ \sf{\implies} \:16

\therefore The Original Number is 16.


Anonymous: Awesome ; )
Similar questions