The sum of the digits of a 2-
digit number is 7. If the digits
are reversed the new number increased
by 3 less than 4 times the original
number. Find the origind number.
Answers
Answer :-
The original number is 16.
Solution :-
Let the digits of the two digit number be x and y
Sum of the digits of a two digit number = 7
⇒ x + y = 7
⇒ x = 7 - x --(1)
Original number = 10x + y
New number when digits are reversed = 10y + x
According to the question
⇒ 10y + x = 4(10x + y) - 3
⇒ 10y + x = 40x + 4y - 3
⇒ 3 = 40x + 4y - 10y - x
⇒ 3 = 39x - 6y
⇒ 3 = 3(13x - 2y)
⇒ 3/3 = 13x - 2y
⇒ 1 = 13x - 2y ---(2)
Substitute (1) in (2)
⇒ 1 = 13(7 - y) - 2y
⇒ 1 = 91 - 13y - 2y
⇒ 1 = 91 - 15y
⇒ 15y = 91 - 1
⇒ 15y = 90
⇒ y = 90/15
⇒ y = 6
Substitute y = 6 in (1)
⇒ x = 7 - y
⇒ x = 7 - 6
⇒ x = 1
Original number = 10x + y = 10(1) + 6 = 10 + 6 = 16
Therefore the original number is 16.
Answer:
The Original Number is 16.
Step-by-step explanation:
Gívєn -
Sum of the Digits = 7
The Number with Reversed Digits is 3 less than the 4 times of Original Number
Tσ fínd -
The Original Number
Sσlutíσn -
Let the digits be -
- Units Place = a
- Tens Place = b
The original number = 10a + b
Sum of digits--> 7
According to the Question -
The Number with Reversed Digits is 3 less than the 4 times of Original Number
Multiply Equation (1) by (2)
Add the Equation (2) and (3)
The Original Number =
The Original Number is 16.