The sum of the digits of a 2-digit number is 7. If the digits are reversed, the new number increased by 3 equals
4 times the original number. Find the original number.
Answers
Answer :- 16
Let the tens and units digit be x and y respectively.
According to the question,
- Case 1
⇒ Sum of the digits is 7
⇒ x + y = 7 ...(1)
- Case 2
⇒ If the digits are reversed and the number formed and multiplied by 3 will be equal to 4 times the original number
⇒ New number + 3 = 4 × Original number
Because, a two digit number is of them 10a + b where a and b are tens and units digit respectively.
∴ Original number = 10x + y
and, New number = 10y + x [ ∵ Digits are reversed ]
⇒ (10y + x) + 3 = 4(10x + y)
⇒ 10y + x + 3 = 40x + 4y
⇒ 39x - 6y = 3
⇒ 13x - 2y = 1 ...(2)
Multiply (1) by 13, we get
⇒ 13x + 13y = 91 ...(3)
Subtract (2) from (3)
⇒ 13x + 13y - (13x - 2y) = 91 - 1
⇒ 13y + 2y = 90
⇒ 15y = 90
⇒ y = 6
Substituting [y = 6] in (1), we get
⇒ x + 6 = 7
⇒ x = 7 - 6
⇒ x = 1
So, The Original number = 10x + y
⇒ 10×1 + 6
⇒ 16
Hence, The Original number is 16.
Answer:
16 is answer dear friend