The sum of the digits of a 2-digit number is 7 . The number obtained by interchanging the digits exceeds the original number by 27 . Find the number.
Answers
Answered by
20
Let Tens Place Digit=x
Let Unit Place Digit=y
Sum of Digits=7
Means
x+y=7
x=7-y
Original Number=10×Number at Tens Place +Number at Unit place
Original Number=10x+y
Reverse Number=10y+x
Reverse Number Exceeds Original Number(10x+y) by 27.
A/Q
Original Number+27=Reverse Number
10x+y+27=10y+x
27=10y+x-(10x+y)
27=10y+x-10x-y
27=9y-9x
27=9(y-x)
27/9=y-x
3=y-x
Y-X=3
We know
X=7-Y
Y-(7-Y)=3
Y-7+Y=3
2Y=3+7
2Y=10
Y=10/2
Y=5
WE KNOW
X=7-Y
X=7-5
X=2
Original Number=10x+y=10×2+5=25
Similar questions