Math, asked by jaysheetalagarwal5, 7 days ago

The sum of the digits of a 2- digit number is 8. When we interchange the digits, it is found that the resulting new number is greater than the original by 18. What is the 2-digit number?​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: y} \\ &\sf{digits \: at \: ones \: place \: be \: x} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x} \\ &\sf{reverse \: number = 10x + y} \end{cases}\end{gathered}\end{gathered}

According to statement,

The sum of the digits of a 2- digit number is 8.

\red{\rm :\longmapsto\:x + y = 8 -  -  - (1)}

According to second condition,

When we interchange the digits, it is found that the resulting new number is greater than the original by 18.

\green{\rm :\longmapsto\:10x + y = 10y + x + 18}

\green{\rm :\longmapsto\:10x + y -  10y  -  x  =  18}

\green{\rm :\longmapsto\:9x  -   9y  =  18}

\green{\rm :\longmapsto\:x  -   y  =  2 -  -  - (2)}

On adding equation (1) and (2), we get

\rm :\longmapsto\:2x = 10

\bf :\longmapsto\:x = 5 -  -  - (3)

On substituting the value of x in equation (1), we get

\rm :\longmapsto\:5 + y = 8

\rm :\longmapsto\:y = 8 - 5

\bf :\longmapsto\:y = 3

\begin{gathered}\begin{gathered}\bf\: Hence-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: 3} \\ &\sf{digits \: at \: ones \: place \: be \: 5} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x = 30 + 5 = 35} \\ &\sf{reverse \: number = 10x + y = 50 + 3 = 53} \end{cases}\end{gathered}\end{gathered}

  • Hence, Two digit number is 35.

Similar questions