the sum of the digits of a 2-digits number is 8.the number obtained interchange the digits exceeds the given number by 18. find the given numbers.
Answers
Answered by
120
Hey there !!
Let the ten's digit of the original number be x .
And, the unit's digit of the original number be y.
Now, A/Q
⇒ x + y = 8 ............(1) .
The original number = 10x + y .
Number obtained on reversing the digits = 10y + x .
Now,
⇒ ( 10y + x ) - ( 10x + y ) = 18 .
⇒ 10y + x - 10x - y = 18.
⇒ -9x + 9y = 18.
⇒ 9( -x + y ) = 18.
⇒ -x + y = 18/9 .
⇒ -x + y = 2...........(2) .
On substracting equation (1) and (2), we get
x + y = 8. -x + y = 2. + - - _________
⇒ 2x = 6.
⇒ x = 6/2.
∴ x = 3 .
On putting the value of x in equation (1), we get
⇒ x + y = 8.
⇒ 3 + y = 8.
⇒ y = 8 - 3 .
∴ y = 5 .
∵ Original number = 10x + y .
= 10 × 3 + 5 .
= 30 + 5 .
= 35 .
Hence, the original number is 35 .
THANKS
#BeBrainly.
BIGBANG1234:
nice explanation
Answered by
89
Hi there !
Here's the answer:
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¶¶¶ SOLUTION :
In a two digit No.,
Let units digit be x
& tens digit be (8-x)
(°•° Given that sum of two digits = 8)
•°• The No. is given by
No. = 10 × (face value of tens place) + 1 × (face value of units place)
=>Original No. = 10(8-x) + x
Now,
The digits are interchanged
New No. = 10(x) + (8-x)
Given,
New No. - Original No. = 18
=> 10x+(8-x) - [10(8-x)+x] = 18
=> 10x+8-x - 80 +10x-x = 18
=> 20x-2x -72 = 18
=> 18x = 90
=> x = 5
•°• Units digit of original 2-digit No. = x = 5
& Tens digit of original 2-digit No. = 8-x = 8-5 = 3.
•°• Required 2-digit No. = 35
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¶¶¶ VERIFICATION:
No. = 35
Sum of digits = 8
-- Interchange of digits --
New No. = 53
53 - 35 = 18
•°• Given Data Matched.
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¢#£€®$
:)
Hope it helps
Here's the answer:
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¶¶¶ SOLUTION :
In a two digit No.,
Let units digit be x
& tens digit be (8-x)
(°•° Given that sum of two digits = 8)
•°• The No. is given by
No. = 10 × (face value of tens place) + 1 × (face value of units place)
=>Original No. = 10(8-x) + x
Now,
The digits are interchanged
New No. = 10(x) + (8-x)
Given,
New No. - Original No. = 18
=> 10x+(8-x) - [10(8-x)+x] = 18
=> 10x+8-x - 80 +10x-x = 18
=> 20x-2x -72 = 18
=> 18x = 90
=> x = 5
•°• Units digit of original 2-digit No. = x = 5
& Tens digit of original 2-digit No. = 8-x = 8-5 = 3.
•°• Required 2-digit No. = 35
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¶¶¶ VERIFICATION:
No. = 35
Sum of digits = 8
-- Interchange of digits --
New No. = 53
53 - 35 = 18
•°• Given Data Matched.
•°•°•°•°•°•<><><<><>><><>•°•°•°•°•°
¢#£€®$
:)
Hope it helps
Similar questions