The sum of the digits of a certain two-digit number is 7. reversing its digits increases the number by 9. what is the number?
Answers
Answered by
7
Let the tens digit of required no be X
And the unit digit be Y.
Required no. =10x+y
No, obtained on reversing
=10Y+x
Acoordibg to question.
X+y=7-----------{1}
10Y+X-10X+Y=9
Y-x=1 -------(2)
Now adding 1 and 2
X+Y=7
Y-X=1
2Y=8
Y=4
Now, putting on 1) equestion
X=3.
Then no will be
10*3+4.
34 ans
And the unit digit be Y.
Required no. =10x+y
No, obtained on reversing
=10Y+x
Acoordibg to question.
X+y=7-----------{1}
10Y+X-10X+Y=9
Y-x=1 -------(2)
Now adding 1 and 2
X+Y=7
Y-X=1
2Y=8
Y=4
Now, putting on 1) equestion
X=3.
Then no will be
10*3+4.
34 ans
Answered by
31
Answer:
The number is 34
Step-by-step explanation:
Let,
The units digit = x
The tens digit = 7 - x
Orignal Number :
⇒ 10 (7 - x) + x
⇒ 70 - 10x + x
⇒ 70 - 9x
★ Digit of the number reversing :
⇒ 10x + (7 - x)
⇒ 10x - x + 7
⇒ 9x + 7
★ According to the question:
The number with reversed digits increases
The original number by 9 :
So,
⇒ (70 - 9x) + 9 = (9x + 7)
⇒ 70 + 9 - 9x = 9x + 7
⇒ 79 - 9x = 9x + 7
⇒ 79 - 7 = 9x + 9x
⇒ 72 = 18x
⇒ 18x = 72
⇒ x = 72 / 18
⇒ x = 4
The unit digit = 4
The tens digit = 7 - x
⇒ 7 - 4
⇒ 3
The tens digit = 3
Therefore,
The number is 34
Similar questions