Math, asked by orchidravi3, 10 months ago

the sum of the digits of a two digit is 13. If the digits are interchanged, and the resulting number is added to the original number, we get 143. what is the original number ​

Answers

Answered by Anonymous
13

GIVEN:-

  • Sum of the digits of two digit is 13

  • Digits are interchanged and the resulting Number us added to original number.

  • The Number formed is 143

TO FIND:-

  • The Original Number.

SOLUTION:-

Let the ones place be x

So,

\implies\rm{One's\:place = x}

\implies\rm{Ten's\:Place =(13-x)}

\implies\rm{Original\:Number= 10(13-x)+(x)}

\implies\rm{Original\:Number= 130-10x+x}

\implies\rm{Original\:Number=130-9x}

Now,

Atq.

\implies\rm{One's\:Place =(13-x)}

\implies\rm{Ten's\:Place = x}

\implies\rm{New\:Number=10(x)+13-x}

\implies\rm{New\:Number=10x+13-x}

\implies\rm{New\: Number= 9x+13}.

Again,

Atq.

\implies\sf{New\:Number+Original\:Number=144}

\implies\sf{(9x+13+130-9x)=143}

\implies\sf{13+130=143}

\implies\sf{143=143}

Hence,

This true for all x making 13.

Let' s take a example

49 = 4+9=13

94= 9+14 = 13

Similar questions