The sum of the digits of a two-digit number is 10. If 18 is subtracted from it, will the digits in the resulting number be equal?
Answers
Answer:
The number is 73.
Explanation :
Given :
The sum of the digits of a two-digit number is 10.
To Find :
The number.
Solution :
★ Consider the -
Unit number as - y
Number at ten's place as - x
The resulting equal digits as - z
It implies that :
⇒ x + y=10
⇒ y = 10 - x
If 18 be subtracted from it, It will be,
⇒ 10x + y - 18 = 10z + z
⇒ 10x + y = 11z + 18
Substitute the value of (10-x) for y,
⇒ 10x + (10-x) = 11z + 18
⇒ 10x - x = 11z + 18 - 10
⇒ 9x = 11z + 8
The values of :
- x = 7
- y = 3
- z = 5.
These values form the number - 73
★ Verification :
Given in Question:
If 18 be subtracted from it, the digits in the resulting number will be equal.
⇒ 73 - 18 = 55
Let the once's place be a .
Let the ten's place be b .
Let the resulting digit be c .
_______________________
A. T. Q ,
⇒ a + b = 10.......(1)
From equation 1
⟹ a = 10 - b .......(2)
__________________________
\ We need to subtract 18 \
–––––––––––––––––––
⟹ 10b + a = 10c + c
⟹ 10b + a = 11c + 18
[Substitute value of a]
⟹ 10b + (10-b) = 11c + 18
⟹ 10b - b = 11c + 18 -10
⟹ 9b = 11c + 8
___________________________
So, values are :-
✯a = 7
✯b = 3
✯y = 5