Math, asked by Lekshmikaks, 1 month ago

the sum of the digits of a two-digit number is 11.the number got by interchanging the digits is 27 more than the original number what is the number?​

Answers

Answered by Anonymous
6

Answer

  • The original number = 47.

Given

  • The sum of digits of a two digit number is 11.
  • The number got by interchanging the digit is 27 more than the original number.

To Find

  • The original number.

Step By Step Explanation

Assumption :

Let the tens and ones digit number be x and y respectively.

Then there sum will be x + y = 11 => y = 11 - x. eq. 1.

Original Number = 10x + y.

Number formed by interchanging it's digits = 10y + x.

Equation :

Number formed by interchanging the digit is 27 more than the original. So equation will be

\red  \bigstar\:  \:  \:  \:  \:  \underline{ \boxed{ \bold{ \purple{(10y + x) - (10x+ y) = 27}}}}

Solution of Equation :

Let us solve the above equation.

\longmapsto \tt(10y + x) - (10x+ y) = 27 \\  \\ \longmapsto \tt 10y + x - 10x - y = 27 \\  \\  \longmapsto \tt9y  - 9x = 27 \\  \\  \longmapsto \tt9(y - x) = 27 \\  \\ \longmapsto \tt y - x =   \cancel\cfrac{27}{9}  \\  \\ \longmapsto \tt y - x = 3 \\  \\ \bold{ from \: eq.1 \downarrow} \\  \\  \longmapsto \tt(11 - x) - x = 3 \\ \\  \longmapsto \tt 11 - x - x = 3 \\  \\  \longmapsto \tt11 - 2x = 3 \\  \\ \longmapsto \tt 11 - 3 =  2x \\  \\  \longmapsto \tt8 = 2x \\  \\  \longmapsto \tt \cancel \cfrac{8}{2}  = x \\  \\  \longmapsto   \underline{\boxed{\bold{ \green{4 = x}}}} \:  \:  \:  \:  \:  \:  \:   \purple\bigstar \\  \\  \tt y - x = 3 \implies \:  \underline{\boxed{ \bold{ \pink{y = 7}}}} \:  \:  \:  \:  \:   \purple\bigstar

Therefore, the original number will be 10x + y => 47.

_____________________________

Similar questions