Math, asked by zainab2124, 1 year ago

The sum of the digits of a two-digit number is 12 number obtained by interchanging the two digits exceeds the given number by 18 find the number

Answers

Answered by nain31
72
 \bold{GIVEN}

Sum of two digits number = 12

Let number be at tenth place x

and at unith place be y.

 \mathsf{Number = 10 × x + y}

 \mathsf{= 10x + y}

 \mathsf{x+ y = 12 -----(1)}

Number formed after interchanging digits,

New number will be

 \mathsf{= 10 ×y + x}

 \mathsf{=10y + x }

ACCORDING TO QUESTION,

If digits are interchanged the formed number wil be 18 more than real one.

 \mathsf{10x + y + 18 = 10y + x }

 \mathsf{18 = 10y - y + x - 10}

 \mathsf{18 = 9y - 9x----(2)}

On multiplying eq(1) by 9

 \mathsf{x+ y = 12 -----(1)} ×9

 \mathsf{9x+ 9y = 108}

On subtracting eq(2) from eq(1)

 \mathsf{ 9x+ 9y = 108}

 \mathsf{-9x+9y = 18}

______________________________

18y = 90

______________________________

 \mathsf{\dfrac{90}{18} = y}

 \boxed{\mathsf{5 = y}}

For x,

 \mathsf{x+ 5 = 12}

 \boxed{ \mathsf{x = 7}}

NUMBER =

 \mathsf{7 \times 10 + 5}

\boxed { \mathsf{75}}

smartybabu: hii nain
pratyush4211: Nice
Anonymous: Good Job :)
nain31: thank u ❤
ABHAYSTAR: Nice answer di
nain31: ☺☺
smartybabu: hello everyone !
smartybabu: how are you
nain31: no useless comments plz :)
smartybabu: hii nain
Answered by UltimateMasTerMind
98

Solution:-

Let the Two Digit Number be x & y.

Where,

x is at tens place & y is at once place.

=> Original Number = 10x + y.

CONDITION | ,

x + y = 12 ________(1)

CONDITION ||,

After Interchanging the Digit, we get

10y + x

A.T.Q.

10y + x = 10x + y + 18

=> 9x - 9y = 18._________(2).

By Elimination Method,

9 ( x + y ) = 9 (12)

=> 9x + 9y = 108__________(3).

Subtracting eq (2) from (3). we get,

9x + 9y = 108

-9x + 9y = - 18

_______________

18y = 90

=> y = 5.

Substituting y=5 in eq (1). we get,

x = 7.

Hence,

The Original Number is 75.


pratyush4211: Nice
UltimateMasTerMind: Thanks bro! :)
Anonymous: Well done :)
ABHAYSTAR: Nice bro!!
UltimateMasTerMind: Thanks!
nitin123464: mst bro
UltimateMasTerMind: Thanks! :)
Similar questions