Math, asked by neha9079, 7 months ago

The sum of the digits of a two digit number is 12. the number obtained by reserving the digits is 36 greater than the original number. Find the number. ​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
10

Answer:

  • Sum of the digits of a two digit number = 12
  • On reversing the number the new number is 36

Asume the numbers to be 10x+y and on reversing they become 10y+x

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • The sum of the digits give us 12

\displaystyle\sf :\implies x+y = 12\:\:\:-eq(1)\\

  • When the digits are reversed we get a new Number that's 36 more than the original number

\displaystyle\sf :\implies 10y+x = 10x+y+36\\

\displaystyle\sf :\implies 10y+x-10x-y = -36\\

\displaystyle\sf :\implies -9x+9y = 36\\

\displaystyle\sf :\implies 9x-9y = 36\\

[Dividing the whole equation by 9]

\displaystyle\sf :\implies \dfrac{9x}{9}-\dfrac{9y}{9} = \dfrac{36}{9}\\

\displaystyle\sf :\implies x-y = 4\:\:\: -eq(2)

Subtracting eq(2) from eq(1)

\displaystyle\sf :\implies 2y = 8\\

\displaystyle\sf :\implies y = \dfrac{8}{2}\\

\displaystyle\sf :\implies\underline{\boxed{\sf y = 4}}

Now the value of x will be,

\displaystyle\sf :\implies x+y = 12\\

\displaystyle\sf :\implies x+4 = 12\\

\displaystyle\sf :\implies x = 12-4\\

\displaystyle\sf :\implies\underline{\boxed{\sf x = 8}}

\displaystyle\underline{\bigstar\:\textsf{The Original number :}}

\displaystyle\sf \dashrightarrow 10x+y\\

\displaystyle\sf \dashrightarrow 10\times 8+4\\

\displaystyle\sf \dashrightarrow 80+4\\

\displaystyle\sf \dashrightarrow \textsf{\textbf{Original Number = 84}}

Similar questions