Math, asked by anuragkumar1398, 6 months ago

the sum of the digits of a two digit number is 14 if the number formed by reversing the digits is less than the original number by 18

Answers

Answered by kunjika158
3

Answer:

Let the number be (10x+y).

given: sum of the digits =14

Step-by-step explanation:

so,

10(14-y)+y-36=10y=14-y

140-10y+y-36=9y+14

-9y-9y=14+36_140

-18y=-90

y=-90/-18

y=5

substitute y value

x=14-y

x=14-5

x=9

The number=10(9)+5=95.

HENCE, THE NUMBER IS 95.

Answered by Anonymous
81

 \large \underline \bold{For \: a \: two \: digit \: no. -}

\: \: \:  \small \underline \bold{Let -}

\: \: \: \: \: \:  \small \bold{Unit \: digit = x}

\: \: \: \: \: \:  \small \bold{tenth \: digit = y}

\: \: \: \:  \small \bold{The \: number = (10y + x)}

 \large \underline \bold{Given :-}

\: \: \: \: \:  \small \bold{x + y = 14 ---(1)}

 \large \underline \bold{To \: Find :-}

\: \: \: \:  \small \bold{What's \: the \: original \: number \: ?}

 \large \underline \bold{Solution :-}

\: \: \: \:  \small \underline \bold{According \: to \: the \: question -}

\: \: \: \: \: \: \:  \small \bold{When \: the \: digits \: are \: reversed .}

\: \: \: \:  \small \bold{Then \: ,}

\: \: \: \:  \small \bold{The \: new \: No. = (10x + y)}

\: \: \: \:  \small \bold{Now \: ,}

\: \: \: \: \:  \small \bold{(10x + y) = (10y + x) - 18}

\: \: \: \: \: \: \: \:  \small \bold{10x - x = 10y - y - 18}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{9x = 9y - 18}

\: \: \: \: \: \: \:  \small \bold{9x - 9y = -18}

\: \: \: \: \: \: \:  \small \bold{9(x - y) = -18}

\: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{x - y = -2 ---(2)}

\: \: \: \:  \small \bold{From \: eq.(1) + eq.(2) -}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{2x = 12}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{x = 6}

\: \: \: \: \:  \small \bold{then -}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{y = 8}

\: \: \: \: \:  \small \bold{The \: Original \: No. = 10(8) + 6 = 80 + 6 = 86}

 \large \underline \bold{For \: Confirmation :-}

\: \: \:  \small \bold{The \: original \: No. = 86}

\: \: \: \: \: \:  \small \bold{Reversing \: No. = 68}

\: \: \: \: \: \:  \small \bold{Reversing \: No. = (Original \: No. - 18)}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \small \bold{68 = 86 - 18}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:   \small \bold{68 = 68}

\: \: \: \: \: \:  \small \bold{It's \: true .}

\: \: \: \:  \small \bold{The \: original \: number \: is \: 86 \: .}

Similar questions