Math, asked by wisteria6401, 9 months ago

The sum of the digits of a two-digit number is 15 if the number obtained by reversing the digit is less than the original number by 27 find the original number .

Answers

Answered by Anonymous
2

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of digits of two digit number is 15.

  • Number obtained by reversing the digits is 27 less than the original number.

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The original number

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Let tens digit of the original number be: x

Hence one's digit will be 15 - x

 \:\:

 \underline{\bold{\texttt{So original number,}}}

 \:\:

⇛ 10(x) + (15-x) 

 \:\:

 \underline{\bold{\texttt{Reversing digits mean }}}

 \:\:

⇛ 10(15-x) + x

 \:\:

Therefore,

 \:\:

⇛ [10(x) + (15 - x)]-[10(15 - x) + x] = 27

 \:\:

⇛ 10x + 15 - x - 150 + 10x - x = 27

 \:\:

⇛ 10x + 10x + 15 - 150 -x - x = 27

 \:\:

⇛ 20x - 135 - 2x = 27

 \:\:

⇛ 18x - 135 = 27

 \:\:

⇛ 18x = 27 + 135

 \:\:

⇛ 18x = 162

 \:\:

⇛ x = 162/18

 \:\:

⇛ x = 9

 \:\:

original number = 10(x) + (15-x) 

                              = 10(9) + (15-9)

                              = 90+6

\purple\longrightarrow  \sf 96

Answered by nidhirandhawa7
0

Answer:

the answer is 96

Step-by-step explanation:

pls make it brainlest answer

Similar questions