Math, asked by muskan874661, 5 days ago


The sum of the digits of a two-digit number is 15. The number obtained by interchanging its
digits exceeds the given number by 9. Find the original number ​

Answers

Answered by Anonymous
40

Answer:

Given :-

  • The sum of the digits of a two-digit number is 15.
  • The number obtained by interchanging its digits exceeds the given number by 9.

To Find :-

  • What is the original number.

Solution :-

Let,

Units digit = x

Tens digit = y

Hence, the original number will be :

10x + y

By interchanging its digits we get,

10y + x

According to the question,

Sum of the two digits of a two-digit number is 15.

x + y = 15 ------ (Equation No )

The number obtained by interchanging its digits exceeds the given number by 9.

(10y + x) - (10x + y) = 9

10y + x - 10x - y = 9

10y - y + x - 10x = 9

9y - 9x = 9

9(y - x) = 9

y - x = 9/9

y - x = 1 ------ (Equation No )

By adding the equation no 1 and 2 we get,

x + y + y - x = 15 + 1

x - x + y + y = 16

2y = 16

y = 16/2

y = 8/1

y = 8

Again, by putting y = 8 in the equation no 1 we get,

x + y = 15

x + 8 = 15

x = 15 - 8

x = 7

Hence, the required original number is :

Original Number = 10x + y

Original Number = 10(7) + 8

Original Number = (10 × 7) + 8

Original Number = 70 + 8

Original Number = 78

The original number is 78.

Answered by IIMASTERII
7

\Huge{\texttt{{{\color{Magenta}{⛄A}}{\red{N}}{\purple{S}}{\pink{W}}{\blue{E}}{\green{R}}{\red{♡}}{\purple{࿐⛄}}{\color{pink}{:}}}}}

 \sf{let  \: the \:  digit  \: at  \: unit \:  place \:  to \:  be  \: x}

 \sf{then  \: digit  \: at  \: tens  \: place =15-x}

 \sf{so  \: original  \: no=10(15-x)+x}

 \sf \red{ \longrightarrow150-10x+x}

\boxed{ \tt{ \red{=150-9x}}}

 \sf {if  \: digit \:  get  \: interchange \:  then;}

 \sf{and  \: at \:  tens  \: place=x}

 \sf{so  \: new \:  no=10(x)+15-x}

 \sf \pink{  \longrightarrow10x+15-x}

 \boxed{ \sf \pink{ = 9x+15}}

 \sf{so \:  the \:  no \: is : original  \: no -new \:  no=9}

 \sf \purple{ \longrightarrow150-9x -(9x+15)=9}

  \sf \purple{ \longrightarrow150-9x-9x-15=9}

 \sf \purple{ \longrightarrow135-18x=9}

 \sf \purple{ \longrightarrow-18x=-135+9}

 \sf \purple{ \longrightarrow-18x=-126}

 \boxed{ \sf \purple{x=7}}

 \tt \red{so \:  digit \:  at \:  unit \:  place \:  is  \: 7}

\sf \red{and \:  at  \: tens \:  place \:  is \:  8 \:  so \:  the \:  digit  \: formed \:  is \:  87}

_______________________________

\huge\red{\boxed{\orange{\mathcal{{{\fcolorbox{red}{i}{{\red{@Master}}}}}}}}}

Similar questions