Math, asked by Anonymous, 4 months ago

the sum of the digits of a two-digit number is 17 the new number formed by receiving the digital is greater than the original number by 9 find the original number ​

Answers

Answered by Anonymous
78

\large\sf\underline{Assuming}

  • Tens digit of a number be A .

  • One's digit of a number be B .

\large\sf\underline{Number\:formed}

  • Original Number = 10A + B

  • Reversed Number = 10B + A

\large\sf\underline{Given}

  • The sum of the digits of a two digit number is 17 .

\sf\:A + B = 17

\sf➞\:A= 17-B--(i)

  • The new number formed by reversing the digits is greater than the original number by 9 .

\sf➞\:10A + B + 9 = 10B + A --(ii)

\large\sf\underline{Solution}

In equation (ii) ,

\sf\:10A + B + 9 = 10B + A

Substituting the value of A from equation (ii) :

\sf➻\:10(17-B)+ B + 9 = 10B + (17-B)

\sf➻\:170-10B+ B + 9 = 10B + 17-B

\sf➻\:-10B-10B+ B+B=17 -9-170

\sf➻\:-20B+ 2B= -162

\sf➻\:-18B= -162

\sf➻\:18B= 162

\sf➻\:B= \frac{162}{18}

{\sf{{\pink{➲\:B=9}}}}

Now substituting the value of B in equation (i) :

\sf\:A= 17-B

\sf➻\:A= 17-9

{\sf{{\pink{➲\:A=8}}}}

Now the original number would be :

\sf\:Original\: Number = 10A + B

\sf\:Original\: Number = 10(8) + 9

\sf\:Original\: Number =80 + 9

{\small{\fcolorbox{blacl}{white}{\fcolorbox{black}{red}{\bf{\color{black}{➲\:Original\: Number =89}}}}}}

!! Hope it helps !!

Answered by TheDiamondBoyy
44

\large\sf\underline{CORRECT\:QUESTION:-}

Q: The sum of the digits of a two-digit number is 17. The new number formed by reversing the digits is greater than the original number by 9. Find the original number.

\large\sf\underline{Answer:-}

  • The original number = 89

\large\sf\underline{Step\:by\:step\:Explaination:-}

Let us assume:

Tens digit of a number be A.

Ones digit of a number be B.

Number formed:

Original number = 10A + B

Reversed number = 10B + A

\large\sf\underline{Given\:That:-}

The sum of the digits of a two-digit number is 17.

⇒ A + B = 17

⇒ A = 17 - B _____(i)

The new number formed by reversing the digits is greater than the original number by 9.

⇒ 10A + B + 9 = 10B + A _____(ii)

\large\sf\underline{To\:find:-}

  • The original number.

Finding the values of A and B:

In equation (ii).

⇒ 10A + B + 9 = 10B + A

Substituting the value of A from eqⁿ (i).

⇒ 10(17 - B) + B + 9 = 10B + (17 - B)

⇒ 170 - 10B + B + 9 = 10B + 17 - B

⇒ - 10B + B - 10B + B = 17 - 170 - 9

⇒ - 18B = - 162

Minus sign cancelled both sides.

⇒ 18B = 162

⇒ B = 162/18

⇒ B = 9

Now, In equation (i).

⇒ A = 17 - B

Substituting the value of B.

⇒ A = 17 - 9

⇒ A = 8

Finding the original number:

⇒ Original number = 10A + B

Substituting the values of A and B.

⇒ Original number = 10(8) + 9

⇒ Original number = 80 + 9

⇒ Original number = 89

{\small{\fcolorbox{blacl}{white}{\fcolorbox{black}{red}{\bf{\color{black}{➲\:Original\: Number =89}}}}}}

Similar questions