Math, asked by gopanshymol, 6 months ago

The sum of the digits of a two-digit
number is 4. The sumber got by
changing the digits is 18 less than the
Original number. What is the number ​

Answers

Answered by InfiniteSoul
7

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Sum of digits of 2 digit no. = 4
  • The number got by interchanging the digits is 18 less then the original one .

⠀⠀⠀⠀

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • Original number = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

  • let the original number be 10x + y
  • no. got by reversing the digits = 10y + x

Acc to 1st statement :-

⠀⠀⠀⠀

x + y = 4 ----- ( i )

⠀⠀⠀⠀

Acc. to 2nd statement :-

⠀⠀⠀⠀

10y + x + 18 = 10x + y

⠀⠀⠀⠀

10x - x - 10y + y = 18

⠀⠀⠀⠀

9x - 9y = 18

⠀⠀⠀⠀

9 ( x - y ) = 18

⠀⠀⠀⠀

x - y = 18 / 9

⠀⠀⠀⠀

x - y = 2 ------ ( ii )

⠀⠀⠀⠀

  • Adding eq ( i ) and ( ii )

⠀⠀⠀⠀

x + y + x - y = 2 + 4

⠀⠀⠀⠀

2x = 6

⠀⠀⠀⠀

x = 6 / 2

⠀⠀⠀⠀

x = 3

⠀⠀⠀⠀

  • putting value of x in eq ( i )

⠀⠀⠀⠀

x + y = 4

⠀⠀⠀⠀

3 + y = 4

⠀⠀⠀⠀

y = 4 - 3

⠀⠀⠀⠀

y = 1

⠀⠀⠀⠀

  • finding the no.

⠀⠀⠀⠀

10x + y

⠀⠀⠀⠀

10× 3 + 1

⠀⠀

30 + 1

⠀⠀

31

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Therefore required number is 31
Answered by Anonymous
7

\sf{\bold{\green{\underline{\underline{Given}}}}}

Sum of digits of 2 digit no. = 4

The number got by interchanging the digits is 18 less then the original one .

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

Original number = ??

\sf{\bold{\green{\underline{\underline{Solution}}}}}

let the original number be 10x + y

no. got by reversing the digits = 10y + x

Acc to 1st statement :-

x + y = 4 ----- ( i )

Acc. to 2nd statement :-

⟹ 10y + x + 18 = 10x + y

⟹ 10x - x - 10y + y = 18

⟹ 9x - 9y = 18

⟹ 9 ( x - y ) = 18

⟹ x - y = 18 / 9

⟹ x - y = 2 ------ ( ii )

Adding eq ( i ) and ( ii )

⟹ x + y + x - y = 2 + 4

⟹ 2x = 6

⟹ x = 6 / 2

⟹ x = 3

putting value of x in eq ( i )

⟹ x + y = 4

⟹ 3 + y = 4

⟹ y = 4 - 3

⟹ y = 1

finding the no.

⟹ 10x + y

⟹ 10× 3 + 1

⟹ 30 + 1

⟹ 31

\sf{\bold{\green{\underline{\underline{Answer}}}}}

Therefore required number is 31.

Similar questions