the sum of the digits of a two digit number is 5. if the digits are reversed the number is reduced by 27. find the number.
Answers
Let the unit place digit of a two-digit number be x.
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+x
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27\Rightarrow9x+9=117-9x⇒9x+9=117−9x
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27\Rightarrow9x+9=117-9x⇒9x+9=117−9x\Rightarrow9x+9x=117-9⇒9x+9x=117−9
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27\Rightarrow9x+9=117-9x⇒9x+9=117−9x\Rightarrow9x+9x=117-9⇒9x+9x=117−9\Rightarrow18x=108⇒18x=108
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27\Rightarrow9x+9=117-9x⇒9x+9=117−9x\Rightarrow9x+9x=117-9⇒9x+9x=117−9\Rightarrow18x=108⇒18x=108\Rightarrow x=\frac{108}{18}=6⇒x=18108=6
Let the unit place digit of a two-digit number be x.Therefore, the tens place digit = 9-x\because∵ 2-digit number = 10 x tens place digit + unit place digit\therefore∴ Original number = 10(9-x)+xAccording to the question, New number= Original number + 27\Rightarrow10x+\left(9-x\right)=10\left(9-x\right)+x+27⇒10x+(9−x)=10(9−x)+x+27\Rightarrow10+9-x=90-10x+x+27⇒10+9−x=90−10x+x+27\Rightarrow9x+9=117-9x⇒9x+9=117−9x\Rightarrow9x+9x=117-9⇒9x+9x=117−9\Rightarrow18x=108⇒18x=108\Rightarrow x=\frac{108}{18}=6⇒x=18108=6Hence, the 2-digit number = 10(9-x)+x = 10(9-6)+6 = 10 x 3 + 6 = 30 + 6 = 36