The sum of the digits of a two-digit number is 5. On adding 27 to the number it's digits are reversed. Find the original number.
Answers
Answered by
1
Let the digits be x and y
then the no = 10x + y
given that sum of digits = 2
⇒ x+ y = 5 --------------(1)
On adding 27 we get the reverse of the no
⇒ 10x+y+27 = 10y +x
⇒10x -x +y - 10y +27 = 0
⇒9x - 9y = - 27 --------------(2)
Solving (1) and (2)
9x - 9y = -27
x + y = 5
9x - 9y = -27
9[x + y = 5]
9x - 9y = -27
9x + 9y = 45
⇒ 18x = 18
⇒ x = 18/18
∴ x = 1 in eq (1)
⇒ x+y = 2
⇒ 1 +y = 2
⇒ y = 2-1
∴ y = 1
∴ the no = 10x+y = 10(1) + 1 = 10+1 = 11
then the no = 10x + y
given that sum of digits = 2
⇒ x+ y = 5 --------------(1)
On adding 27 we get the reverse of the no
⇒ 10x+y+27 = 10y +x
⇒10x -x +y - 10y +27 = 0
⇒9x - 9y = - 27 --------------(2)
Solving (1) and (2)
9x - 9y = -27
x + y = 5
9x - 9y = -27
9[x + y = 5]
9x - 9y = -27
9x + 9y = 45
⇒ 18x = 18
⇒ x = 18/18
∴ x = 1 in eq (1)
⇒ x+y = 2
⇒ 1 +y = 2
⇒ y = 2-1
∴ y = 1
∴ the no = 10x+y = 10(1) + 1 = 10+1 = 11
diyadev:
thx a ton
Similar questions