Math, asked by aaditya711, 4 months ago

the sum of the digits of a two digit number is 5 on adding 27 to the number it's digits are reversed find the original number​

Answers

Answered by Anonymous
1

Answer:

the answer is given below

Step-by-step explanation:

Given: The sum of the digits of a two digit number is 5, on adding 27 to the number its digits are reversed.

To find: The original number.

Solution:

Now we have given that The sum of the digits of a two digit number is 5.

So, let the number be 10x + y. Then:

                 x + y = 5

                 x = 5 - y              ......(i)

Now It is given that on adding 27 to the number its digits are reversed.

                 10x + y + 27 = 10y + x

                 9x - 9y + 27 = 0

Now putting (i), in above equation, we get:

                 9(5 - y) - 9y + 27 = 0

                 45 - 9y - 9y + 27 = 0

                 72 = 18y

                 y = 72 / 18

                 y = 4

Now putting y = 4 in equation (i), we get:

                 x = 5 - y

                 x = 5 - 4

                 x = 1

So the number is:

                 10x + y = 10(1) + 4 = 14

Answer:

              Therefore the number is 14.

Mark me as Brainliest if u feel the answer very helpful

Similar questions