Math, asked by saurabhchauhan66, 10 months ago

The sum of the digits of a two-digit number is 7. If the digits are reversed, the new number increased by
3 equals 4 times the original number. Find the original number.​

Answers

Answered by Anonymous
6

Let x be the digit at ten's place and y be the digit at unit place.

 \sf \therefore \: The  \: number \:  =  \: 10 \: x + y

 \sf \: Sum  \: of  \: its  \: digits = x + y

 \sf \: On \:  reversing \:  the  \: digits,

 \sf \: The \:  number \:  becomes  \: 10  \: y + x.

 \sf \: A/Q, \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + y =  7  \\  \sf \: and,  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 10y + x + 3 = 4(10x + y) \\  \\  \sf \red{x + y = 7 }\:  \:  \:   \:  \:   \\  \sf \: 10y + x + 3 = 4(10x + y) \\  \sf \implies \: 10y + x + 3 = 40x + 4y \\  \sf \implies \: 10y - 4y + x - 40x = 3 \\  \sf \implies \red{6y - 39x = 3} \:  \:  \:  \:  \blue{} \\  \\  \\ \sf \: x + y = 7 \:  \:   \red{\times 6} \\   \sf  \: 6x + 6y = 42 \:  \:  \:  \:  \blue{eq.(i)}\\ \\  \sf \: 6y - 39x = 3 \:  \:  \red{ \times 1} \\   \sf \: 6y - 39x = 3 \:  \:  \blue{...eq.(ii)} \\  \\  \sf \: on \: solving \: we \: get \:  -  \\  \sf \: x = 1 \:  \:  \:  \:  \:  \:  \: \: y = 6 \\  \\  \sf \therefore \: Required  \: number = 10x + y  \\  \sf \:  =  \: 10 \times 1 + 6 \\   \boxed{ \red{ \underline{ \sf \: =  16 \:  \: ....(ans) }}}

Answered by ajitatopno
0

Answer:

Let’s take the digit at tens place = x

And let the digit at unit place = y

So, the number = 10 × x + 1 × y = 10x + y

Reversing the number = 10 × y + 1 × x = 10y + x

Now, according to the conditions given in the problem, we have

step by step explanation

x + y = 7… (i)

And,

10y + x = 4(10x + y) – 3

10y + x = 40x + 4y – 3

40x – x + 4y – 10y = 3

39x – 6y = 3

13x – 2y = 1 … (ii)

Performing 2 x (i) + (ii) to solve, we have

2x +2 y = 14

13x – 2y = 1

15x = 15

x = 15/15

x = 1

On substituting the value of x in equation (i), we have

1 + y = 7

y = 7 – 1

y = 6

Therefore, the number is 10x + y = 10(1) + 6 = 16

.

Similar questions