Math, asked by tanveer5629, 9 months ago

The sum of the digits of a two digit number is 7
If the digits are reversed, the number is reduced
by 27. Find the number,​

Answers

Answered by Anonymous
20

Answer:

★ Number is 25 ★

Step-by-step explanation:

Given:

  • Sum of digits of two digit number is 7
  • After reversing digits the number is reduced by 27

To Find:

  • What is the number?

Solution: Let the tens digit and unit digit of the number be x and y

x + y = 7.............(1)

A/q

The two digit number is 10x + y and after reversing it's digit the number becomes 10y + x

\small\implies{\sf } 10y + x = 10x + y + 27

\small\implies{\sf } 10y y = 10x x + 27

\small\implies{\sf } 9y = 9x + 27

\small\implies{\sf } 9y 9x = 27

\small\implies{\sf } 9 ( y x) = 27

\small\implies{\sf } y x = 27/9 = 3

\small\implies{\sf } y = 3 + x

Putting y = 3 + x in equation 1

\small\implies{\sf } x + 3+ x = 7

\small\implies{\sf } 2x = 7 3

\small\implies{\sf } 2x = 4

\small\implies{\sf } x = 2

Therefore "y" will be

\small\implies{\sf } y = 2 + 3 = 5

Hence, The two digit number is 25

Answered by rupali8153gmailcom2
2

The Answer:-

25

Step-by-step explanation:

Given:

Sum of digits of two digit number is 7

After reversing digits the number is reduced by 27

To Find:

What is the number?

Solution: Let the tens digit and unit digit of the number be x and y

→ x + y = 7.............(1)

According to question,

→ The two digit number is 10x + y and after reversing it's digit the number becomes 10y +x

⟹ 10y + x = 10x + y + 27

⟹ 10y – y = 10x – x + 27

⟹ 9y = 9x + 27

⟹ 9y – 9x = 27

=>9(y-x)=27

⟹ y – x = 27/9 = 3

⟹ y = 3 + x

 Putting y = 3 + x in equation 1,

⟹ x + 3+ x = 7

⟹ 2x = 7 – 3

⟹ 2x = 4

⟹ x = 2

Therefore "y" will be

⟹ y = 2 + 3 = 5

Ans:-- The two digit number is 25

Similar questions