Math, asked by anant2006verma74, 7 months ago

The sum of the digits of a two digit number is 7. If the digits are reversed, the new number decreased by 2, equals twice the original number. Find the number.​

Answers

Answered by ButterFliee
8

GIVEN:

  • The sum of the digits of a two digit number is 7
  • If the digits are reversed, the new number decreased by 2, equals twice the original number.

TO FIND:

  • What is the original number ?

SOLUTION:

Let the digit at unit's place be 'y' and the digit at ten's place be 'x'

  • NUMBER = 10x + y

CASE:- 1)

The sum of the digits of a two digit number is 7

According to question:-

x + y = 7

x = 7 y....

CASE:- 2)

If the digits are reversed, the new number decreased by 2, equals twice the original number.

Reversed Number = 10y + x

New Number 2 = 2(Original Number)

According to question:-

10y + x –2 = 2(10x + y)

10y + x –2 = 20x + 2y

–2 = 20x + 2y –10y –x

–2 = 19x –8y

Put the value of 'x' from equation 1)

–2 = 19(7–y) –8y

–2 = 133 –19y –8y

–2 –133 = –27y

–135 = –27y

\sf{\cancel\dfrac{-135}{-27}} = y

5 = y

Put the value of 'y' in equation 1)

x = 7 –5

x = 2

  • NUMBER = 10x + y
  • NUMBER = 10(2) + 5
  • NUMBER = 20 + 5
  • NUMBER = 25

Hence, the number formed is 25

______________________

Answered by InfiniteSoul
7

\sf{\underline{\boxed{\large{\blue{\mathsf{Correct\: Question}}}}}}

  • The sum of the digits of a two digit number is 7. If the digits are reversed, the new number decreased by 2, equals twice the original number. Find the number.

_______________________

\sf{\underline{\boxed{\large{\blue{\mathsf{Solution}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Sum of 2 digits of 2 digit no. = 7
  • If the digits are reversed the new number decreased by 2 equals twice the original numbers .

_______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • The original number = ???

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

let the original no. be 10x + y

  • Sum of 2 digits of 2 digit no. is 7

\sf\implies x + y = 7 ------( i )

  • If the digits are reversed the new number decreased by 2 equals twice the original numbers .

\sf\implies 10y + x - 2 = 2 ( 10x + y )

\sf\implies 10y + x - 2 = 20x + 2y

\sf\implies 10y - 2y + x -20x = 2

\sf\implies 8y - 19x = 2  --------( ii )

  • Multiply eq i by 8

\sf\implies 8x + 8y = 56 -------- ( iii )

  • subtracting eq iii from ii

\sf\dag 8y - 19x - 8x - 8y = 2 - 56

\sf\dag - 27x = -54

\sf\dag x = 2

\sf{\red{\boxed{\bold{\leadsto x = 2}}}}

putting value of y in eq . i

\sf\dag x + y = 7

\sf\dag 2 + y = 7

\sf\dag y = 7 - 2

\sf\dag y = 5

\sf{\red{\boxed{\bold{\leadsto y = 5}}}}

__________________________

\longrightarrow 10x + y

\longrightarrow 10\times 2 + 5

\longrightarrow 20 + 2

\longrightarrow 25

\sf{\pink{\boxed{\bold{\leadsto Original\: no\: = \: 25 }}}}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Original number is 25
Similar questions