The sum of the digits of a two digit number is 7. If we interchange the digits, then the resulting number is 9 less than the original number, then what is the digit?
Answers
Numbers can be,
10, 21, 32, 43, 54, 65, 76, 87, 98
Step-by-step explanation:
QUESTION :-
The sum of the digits of a two digit number is 7. If we interchange the digits, then the resulting number is 9 less than the original number, then what is the number?
_____________________
SOLUTION :-
Let the number's tens digit = x
and, ones digit = y
So,
The original number will be 10x + y
And,
number after interchanging digits = 10y + x
____________________
A.T.Q.
Original number - resulting number (interchanging digits) = 9
=> 10x + y - (10y + x) = 9
=> 10x + y - 10y - x = 9
=> 10x - x + y - 10y = 9
=> 9x - 9y = 9
=> 9(x - y) = 9
=> x - y = 9/9
=> x - y = 1
Now,
You can put any single digit number as x, and y as 1 less than x. You will get the number.
Like :-
x = 3 ; y = 2
=> original number = 10x + y = 10(3) + 2 = 30+2
= 32
number by interchanging digits = 23 , which is 9 less than original.
_____________________
CONCLUSION :-
The possible numbers are,
- 10
- 21
- 32
- 43
- 54
- 65
- 76
- 87
- 98
If you interchange the digits (of following numbers), the resulting number will be 9 less than original.
_____________________
Hope it helps.
#BeBrainly :-)