Math, asked by maryamshamil, 10 months ago

.The sum of the digits of a two digit number is 7. The number obtained by interchanging the digits exceeds the original number by 27. Find the original number.


shesanth: hi
Anonymous: ello
shesanth: is it good
St08: hii

Answers

Answered by Anonymous
31

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The sum of the digits of a two digit number is 7. The number obtained by interchanging the digits exceeds the original number by 27.

\bf{\red{\underline{\bf{To\:find\::}}}}

The original number.

\bf{\red{\underline{\bf{Explanation\::}}}}

Let the ten's place digit be r

Let the one's place digit be m

\boxed{\bf{The\:original\:number=10r+m}}}}}\\\boxed{\bf{The\:reversed\:number=10m+r}}}}}

A/q

\longrightarrow\sf{r+m=7}\\\\\longrightarrow\sf{m=7-r.................(1)}

&

\longrightarrow\sf{10m+r=10r+m+27}\\\\\longrightarrow\sf{10m-m+r-10r=27}\\\\\longrightarrow\sf{9m-9r=27}\\\\\longrightarrow\sf{9(m-r)=27}\\\\\longrightarrow\sf{m-r=\cancel{\dfrac{27}{9} }}\\\\\longrightarrow\sf{m-r=3}\\\\\longrightarrow\sf{7-r-r=3\:\:\:[from(1)]}\\\\\longrightarrow\sf{7-2r=3}\\\\\longrightarrow\sf{-2r=3-7}\\\\\longrightarrow\sf{-2r=-4}\\\\\longrightarrow\sf{r=\cancel{\dfrac{-4}{-2} }}\\\\\longrightarrow\sf{\purple{r=2}}

Putting the value of r in equation (1),we get;

\longrightarrow\sf{m=7-2}\\\\\longrightarrow\sf{\purple{m=5}}

Thus;

\underbrace{\sf{The\:original\:number\:=(10r+m)=10(2)+5=20+5=\boxed{25}}}}}


Anonymous: :)
Anonymous: Great
Anonymous: Thanks :D
Anonymous: Always welcomed
Anonymous: ya
sachinpoolu: wow
MarshmellowGirl: Great Answer : )
Anonymous: Amazing!!!!
St08: hii
Answered by BrainlyIAS
37

\bigstar Solution :

\bigstar Given Data :

\star The sum of the digits of a two digit number is 7. The number obtained by interchanging the digits exceeds the original number by 27.

\bigstar To Find :

\star The original two digit number.

\bigstar Explanation :

\star Let the ten's place digit be x

\star Let the one's place digit be y

\star So the original number be ' 10x + y '

\star and Reversed number be ' 10y + x '

\star A/c to the 1st condition ,

=> x + y = 7 ...(1)

\star A/c to the 2nd condition,

=> 10y + x = 10x + y + 27

=> 9y = 9x + 27

=> 9 ( y ) = 9 ( x + 3 )

=> y = x + 3

=> y - x = 3 ...(2)

\star Now , solve (1) + (2) , we get ,

=> ( x + y ) + ( y - x ) = 7 + 3

=>  2 y = 10

=>  y = 5

\star Substituting value of y in (1) , we get ,

=> x + (5) = 7

=> x = 7 - 5

=> x = 2

=> The Original number = 10 x + y = 10 (2) + 5

∴ The Original number = 20 + 5 = 25

--------------------------------------------------------------------------

>>> \star \star \star Hope Helps You \star \star \star <<<


BrainlyIAS: Thanks
Anonymous: good!
BrainlyIAS: thanks
Similar questions