The sum of the digits of a two digit number is 7. When the digits are reversed, then number is decreased by 9. Find the number
Answers
Answered by
2
Let the first digit be a
Let the second digit be b
The first condition
a+b=7 ...............................(1)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The second condition
The first order value:
××a is a counting in tens. So actual value is 10×a
××b is counting in units. So actual value is 1×b
The first Order Value=10a+b...............................(2)
'-----------------------------------------------------------------------'
The second order value:
××b is a counting in tens. So actual value is 10×b
××a is counting in units. So actual value is 1×a
The second Order Value=10b+a.........................(3)
'----------------------------------------------------------------------'
From the question
Equation (3)−Equation (2)=9.................................(4)
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Putting it all together
Equation 4 becomes→(10b+a)−(10a+b)=9
9b−9a=9..............................................(4a)
a+b=7...................................................(1)
From equation (1)
a=7−b
Substitute in (4a) giving:
9b−9(7−b)=9
9b+9b−63=9
18b=72
b=7218=4
Substitute in Equation (1) giving
a+b=7→a+4=7
a=3
Mark it brainlest
Let the second digit be b
The first condition
a+b=7 ...............................(1)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The second condition
The first order value:
××a is a counting in tens. So actual value is 10×a
××b is counting in units. So actual value is 1×b
The first Order Value=10a+b...............................(2)
'-----------------------------------------------------------------------'
The second order value:
××b is a counting in tens. So actual value is 10×b
××a is counting in units. So actual value is 1×a
The second Order Value=10b+a.........................(3)
'----------------------------------------------------------------------'
From the question
Equation (3)−Equation (2)=9.................................(4)
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Putting it all together
Equation 4 becomes→(10b+a)−(10a+b)=9
9b−9a=9..............................................(4a)
a+b=7...................................................(1)
From equation (1)
a=7−b
Substitute in (4a) giving:
9b−9(7−b)=9
9b+9b−63=9
18b=72
b=7218=4
Substitute in Equation (1) giving
a+b=7→a+4=7
a=3
Mark it brainlest
mdfaruque0:
this answer is wrong
Answered by
9
Hey mate,
x + y = 7--> x = 7-y
10y + x = 10 x + y - 9
Simplify:
9y = 9x - 9
9y = 9(7-y) -9
9y = 63 - 9y -9
18y = 54
y = 3
x = 4
The number is 43
hope this helps you out!
x + y = 7--> x = 7-y
10y + x = 10 x + y - 9
Simplify:
9y = 9x - 9
9y = 9(7-y) -9
9y = 63 - 9y -9
18y = 54
y = 3
x = 4
The number is 43
hope this helps you out!
Similar questions