Math, asked by jaiswalishant1216, 1 year ago

The sum of the digits of a two digit number is 8. If the digits are reversed, the number is decreased by 54. The number is

Answers

Answered by rafa48
9

Answer:

given a+b=8-->1

10b+a=a+10a-54(- bcoz reverse of digit dec by 54)-->2

from a+b=8

a=8-b sub this in eq 2

then we get 18b=18

b=1

a=7

so original numb is 71

Answered by talasilavijaya
0

Answer:

The number is 71.

Step-by-step explanation:

Given the sum of the digits of a two digit number is 8

        Let the digits be a and b

        and hence the number is 10a+b

        Then the sum of the digits is a+b=8                          ...(1)

and given, if the digits are reversed, the number is decreased by 54

                    (10a+b)-(a+10b)=54

                                  \implies 9a-9b=54\implies a-b=\frac{54}{9}

                                  \implies a-b=6                                        ...(2)

Adding equations (1) and (2),

                   2a=14\implies a=\frac{14}{2} =7

Substituting a in equation (1),

                  7+b=8\implies b=8-7=1

Then the number is 10a+b=10\times 7+1=71

The number is 71.

Similar questions