Math, asked by Anonymous, 9 months ago

☃⛄☕▁ ▂ ▄ ▅ ▆ ▇ █ The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number. █ ▇ ▆ ▅ ▄ ▂ ▁☕☃⛄

¯\_(ツ)_/¯Spammers not alllowed ❎❎❎❎


Answers

Answered by Anonymous
0

Step-by-step explanation:

<body bgcolor=yellow><marquee><font color=Red>

\huge\blue{\mid{\underline{\overline{\text{Verified\: Answer}}}\mid}}

The Number Is 18....so if We Add 1,8 = 9

By Interchanging Thai Digits We Get 81...

Which Is 18 ×9 = 81 × 2..

Mark as brainlist.....

Take Care.....

# Indians Fight Against Corona.....

\huge{\blue{\fbox{\purple{\bigstar{\mathbf{\red{</strong><strong>Thanks</strong><strong>\:</strong><strong>}}}}}}}

Answered by ItzXmartySHRUTI
1

Answer:

Given :-

The sum of digits f a two digit number is 9.

Also nine times this number is twice the number obtained by reversing the order of digit.

To Find :-

The Number

Solution :-

Let the unit digit and tens digits of the number be x and y                  

Number = 10y + x                  

Number after reversing the digits = 10x + y    

             

According to the question,                  

⇒  x + y = 9 ... (i)                  

⇒  9(10y + x) = 2(10x + y)                  

⇒  88y - 11x = 0                  

⇒ -x + 8y =0 ... (ii)                  

Adding equation (i) and (ii), we get                  

⇒  9y = 9                  

⇒  y = 1 ... (iii)                  

Putting the value in equation (i), we get                  

⇒  x = 8                  

Hence, the number is 10y + x = 10 × 1 + 8 = 18.

Similar questions