Math, asked by Disha567, 10 months ago

the sum of the digits of a two digit number is 9.If 9 is added to the numberby reversing its digits,then the result is thrice the original number.find the original number ​

Answers

Answered by Anonymous
8

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given a two digit number having 9 as the sum of its digits
  • When 9 is added to number by reversing the digit the result is thrice the original number

To Find:

  • We have to find the number

Solution:

Let the digit at Tens place be = x

Digit at One's place = y

\boxed{\sf{\green{Original \: Number = 10x + y}}}

\boxed{\sf{\green{Reversed \: Number = 10y + x }}}

________________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \: first \: Condition:}}

\hookrightarrow \sf{Sum \: of \: digits = 9 }

\hookrightarrow \sf{ x + y = 9 }

\hookrightarrow \boxed{\sf{ y = 9 - x }} ----------- ( 1 )

__________________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \: second \: Condition:}}

\hookrightarrow \sf{(Reversed \: Number)+9 = 3(Original \: Number)}

\hookrightarrow \sf{ (10y+x) + 9 = 3( 10x+y )}

\hookrightarrow \sf{ 10y+x + 9 = 30x + 3y}

Separating like terms on same side of equation

\hookrightarrow \sf{29x - 7y = 9}

Putting value of x from equation ( 1 )

\hookrightarrow \sf{29(9-y) - 7y = 9 }

\hookrightarrow \sf{261 - 29y - 7y = 9 }

\hookrightarrow \sf{36y = 252 }

\hookrightarrow \sf{y = \dfrac{252}{36} }

\hookrightarrow \sf{y = \cancel{\dfrac{252}{36} }}

\hookrightarrow \sf{y = 7 }

Putting value of y in Equation ( 1 )

\longrightarrow \sf{ x = 9 - y }

\longrightarrow \sf{ x = 9 - 7 }

\longrightarrow \sf{ x = 2 }

_________________________________

Hence original number is

\implies \sf{Original \: Number = 10x + y}

\implies \sf{Original \: Number = 10(2) + 7}

\implies \sf{Original \: Number = 20+ 7}

\implies \sf{Original \: Number = 27}

\boxed{\large\mathfrak\red{Original \: Number = 27 }}

Answered by Anonymous
3

Let the original number be = 10x + y

Then x + y = 9

=> y = 9 - x ___(1)

According to the question:

10y + x + 9 = 3(10x + y)

=> 10y + x + 9 = 30x + 3y

=> 7y + 9 = 29x

Put (1):

=> 7(9 - x) + 9 = 29x

=> 63 - 7x + 9 = 29x

=> 72 = 36x

=> x = 2

y = 9 - x

=> y = 7

Number: 27

Similar questions