Math, asked by khushiraval9605, 2 months ago

The sum of the digits of a two digit number is 9 on receiving its digits the new number obtained is 45 more than the original number find the number.

Answers

Answered by ShírIey
148

❍ Let's say, ten's place digit be x and unit place digit be y respectively.

Hence,

  • Original number = (10x + y).

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀

\underline{\bigstar\:{\pmb{\textsf{According to the given Question :}}}}

  • Sum of the digits of a two digit number is 9.

⠀⠀

:\implies\sf x + y = 9 \\\\\\:\implies\sf y = 9 - x \qquad\qquad\bigg\lgroup\sf eq^{n}\;(1)\bigg\rgroup\\ \\

Also,

  • After reversing the digits the new number obtained is 45 more than the original number. The number obtained by reversing the digits is (10y + x).

:\implies\sf 10y + x + 10x + y = 45 \\\\\\:\implies\sf 9y- 9x = 45 \\\\\\:\implies\sf 9\Big\lgroup\sf 9 - x\Big\rgroup - 9x = 45 \\\\\\:\implies\sf 9 - x - x = 5\\\\\\:\implies\sf 9 - 2x = 5\\\\\\:\implies\sf -2x = 5 - 9\\\\\\:\implies\sf -2x = -4\\\\\\:\implies\sf x = \cancel\dfrac{-4}{-2} \\\\\\:\implies\underline{\boxed{\pmb{\frak{x = 2}}}}\;\bigstar

⠀⠀⠀⠀

⠀⠀⠀⠀\underline{\bf{\dag} \:\mathfrak{Putting\;value\; of\:x\;in\;eq^{n}\;(1)\: :}}⠀⠀⠀⠀

⠀⠀⠀⠀

\dashrightarrow\sf y = 9 - x \\\\\\\dashrightarrow\sf y = 9 - 2  \\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{y = 7}}}}\;\bigstar

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

⠀⠀

O R I G I N A L⠀N U M B E R

⠀⠀⠀

\dashrightarrow\sf Original\;no. = 10x + y \\\\\\\dashrightarrow\sf Original\; no. = 10(2) + 7\\\\\\\dashrightarrow\sf Original\;no. = 20 + 7\\\\\\\dashrightarrow\underline{\boxed{\pmb{\frak{\purple{Original\;no. = 27}}}}}\;\bigstar

\therefore{\underline{\textsf{Hence, the required original number is \textbf{27}.}}}

Answered by BrainlyRish
117

\qquad \underline {\bf{\purple {\:\maltese  \:Proper \:Question \:: \:}}}\\

  • The sum of digits of a two digit number is 9 . On reversing its digits the new number obtained is 45 more than the original number . Find the number .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given that , The sum of the digits of a two -- digit number is 9 & On reversing it's digits the new number obtained is 45 more than the original number .

Exigency To Find : The Original number ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the the digit at ten's place & one's place be a & b , respectively.

Therefore,

⠀⠀⠀▪︎⠀ORIGINAL NUMBER : ( 10a + b ) .

As, Per the Question ;

⠀⠀CASE I : The sum of digits of a two digit number is 9 .

\qquad \therefore  \: \sf \Big\{ Digit_{(\:Ten's \:Place \:)} \:\Big\} \: + \:\Big\{ Digit_{(\:One's \:Place \:)} \:\Big\} \:=\:9\:\\\\

\qquad \dashrightarrow  \: \sf \Big\{ Digit_{(\:Ten's \:Place \:)} \:\Big\} \: + \:\Big\{ Digit_{(\:One's \:Place \:)} \:\Big\} \:=\:9\:\\\\

\qquad \dashrightarrow  \: \sf \Big\{ a \:\Big\} \: + \:\Big\{ b \:\Big\} \:=\:9\:\\\\

\qquad \dashrightarrow  \: \sf \Big\{ a \:\Big\} \: + \:\Big\{ b \:\Big\} \:=\:9\:\\\\

\qquad \dashrightarrow  \: \sf a \: \: + \:\:b \: \:=\:9\:\\\\

\qquad \dashrightarrow  \: \sf b \: \: \:=\:9\:-\:a\:\\\\

\qquad \dashrightarrow  \: \bf b \: \: \:=\:9\:-\:a\:\qquad \:\bigg\lgroup \sf{ Eq^n \: i }\bigg\rgroup  \\\\

⠀⠀CASE II : On reversing it's digits the new number obtained is 45 more than the original number .

On , reversing digits we get ,

  • The digit at ten's place will be b &
  • The digit at one's place will be a .

Therefore,

  • NEW NUMBER = ( 10b + a )

\qquad \therefore  \: \sf \Big\{ New\:Number \:\Big\} \:  \:=\:45\:+ \:\:\Big\{ Original \:Number \:\Big\}\\\\

\qquad \dashrightarrow  \: \sf \Big\{ New\:Number \:\Big\} \:  \:=\:45\:+ \:\:\Big\{Original \:Number \:\Big\}\\\\

\qquad \dashrightarrow  \: \sf \Big\{ New \:Number \:\Big\} \: - \:\Big\{ Original \:Number \:\Big\} \:=\:45\:\\\\

\qquad \dashrightarrow  \: \sf \Big\{ 10b + a  \:\Big\} \: - \:\Big\{ 10a + b   \:\Big\} \:=\:45\:\\\\

\qquad \dashrightarrow  \: \sf 10b + a  \:\: - \: 10a - b  \: \:=\:45\:\\\\

\qquad \dashrightarrow  \: \sf 9b - 9a  \: \:=\:45\:\\\\

⠀⠀[ Canceling each by 9 ]

\qquad \dashrightarrow  \: \sf 9b - 9a  \: \:=\:45\:\\\\

\qquad \dashrightarrow  \: \sf b - a  \: \:=\:5\:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Eq^n \: i \: as\: Value\:of \:b \::}}\\

\qquad \dashrightarrow  \: \bf b \: \: \:=\:9\:-\:a\:\qquad \:\bigg\lgroup \sf{ Eq^n \: i }\bigg\rgroup  \\\\

\qquad \dashrightarrow  \: \sf b - a  \: \:=\:5\:\\\\

\qquad \dashrightarrow  \: \sf  \Big\{ 9 - a \Big\}  - a \: \:=\:5\:\\\\

\qquad \dashrightarrow  \: \sf 9 - a  - a  \: \:=\:5\:\\\\

\qquad \dashrightarrow  \: \sf 9 - 2a  \: \:=\:5\:\\\\

\qquad \dashrightarrow  \: \sf  - 2a  \: \:=\:5\:- 9 \\\\

\qquad \dashrightarrow  \: \sf  - 2a  \: \:=\:\:- 4 \\\\

\qquad \dashrightarrow  \: \sf  a  \: \:=\:\:\dfrac{- 4}{-2} \\\\

\qquad \dashrightarrow  \: \sf  a  \: \:=\:\:2 \\\\

\qquad \dashrightarrow  \: \underline {\boxed {\pmb{\frak{\pink{ a \: ( \:or \:Ten's \:Place \:Digit \:)\: \:=\:\:2 }}}}}\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Value \:of \:a \:in \:Eq^n\:i \::}}\\

\qquad \dashrightarrow  \: \bf b \: \: \:=\:9\:-\:a\:\qquad \:\bigg\lgroup \sf{ Eq^n \: i }\bigg\rgroup  \\\\

\qquad \dashrightarrow  \: \sf b \: \: \:=\:9\:-\:a\:\\\\

\qquad \dashrightarrow  \: \sf b \: \: \:=\:9\:-\:2\:\\\\

\qquad \dashrightarrow  \: \sf b \: \: \:=\:7\:\\\\

\qquad \dashrightarrow  \: \underline {\boxed {\pmb{\frak{\pink{ b \: ( \:or \:One's \:Place \:Digit \:)\: \:=\:\:7 }}}}}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \underline {\:\pmb{\mathbb{ \maltese \:\:ORIGINAL  \:NUMBER \:\::\:}}}\\

\qquad\sf  \dashrightarrow Original \:Number \: \:=\: \Big\{ 10 a + b \:\Big\}\:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \sf \dashrightarrow Original \:Number \: \:=\: ( 10 a + b \:)\:\\\\

\qquad\sf  \dashrightarrow Original \:Number \: \:=\: ( 10 (2) + 7 \:)\:\\\\

\qquad\sf  \dashrightarrow Original \:Number \: \:=\: ( 20 + 7 \:)\:\\\\

\qquad\sf  \dashrightarrow Original \:Number \: \:=\: 27\:\\\\

\qquad \dashrightarrow  \: \underline {\boxed {\pmb{\frak{\pink{ Original \:Number \: \:=\: 27 }}}}}\\\\

\qquad \therefore \: \underline {\sf Hence,  \:The \:Original \:number \:is \:\pmb{\bf 27 } \:.}\\\\

Similar questions