Math, asked by needshelp26, 5 months ago

The sum of the digits of a two-digit number is ten. Twice its tens digit is one less than its units digit. Find the two-digit number.

Answers

Answered by PharohX
11

Step-by-step explanation:

GVEN :-

  • Sum of two digit number is ten .
  • Twice the tens digit is one less than unit digit

SOLUTION :-

  • Let unit digit be. x and tens digit is y

  • Hence the two digits number = (10y + x)

According To the First case(i) :-

 \sf \: Sum \:  of  \: digits  \: of  \:  2 \:  digit  \: number \:  =10

 \sf \implies \:  \: x + y = 10

 \sf \implies \:  \: y = 10 - x \:  \:  \:  \:  \:  \: ..(i)

Second Case ( ii )

 \sf \: Twice \:  the \:  tens  \: digit \:  is \:  one \:  \:  less \:  than  \: its  \: \\  \:  \ \sf \:   \: units  \: digit.  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \: 2y = x - 1

 \implies \sf \: 2(10 - x) = x - 1

 \implies \sf \: 20 -2 x = x - 1

 \sf  \implies \: 2x + x = 20 + 1

 \sf  \implies \: 3 x = 21

 \sf  \implies \:  x = 7

Here x = 7 then

y = 10-x = 10 - 7 =3

 \sf \: hence \: no. \: \: is \: (10 \times 3 + 7) \\  \sf \:  = 37

Similar questions