Math, asked by suhas33, 1 year ago

the sum of the digits of the two digit number is 12 if the new number formed by reversing the digit is greater than the original number by 54 find the original number

Answers

Answered by saurabhsuman725
4
let a and b the digit
a+b=12 ........(1)
54+(10a+b)=(10b+a)
54+10a+b=10b+a
9a-9b=-54
a-b=-6........(2)
adding (1) and (2)

a+b=12
a-b=-6
----------
2a=6
a=3
so b=9
39+54=93 (verified)
orig no.=39 and  No. when digits reversed=93
Answered by Anonymous
1

\Large{\textbf{\underline{\underline{According\;to\;the\;Question}}}}

Assumption

Digit(Unit place) = t

Digit(Tens place) = p

Now,

Number = 10p + t

When number Reversed = 10t + p

A/Q we have,

First situation :-

⇒ p + t = 12

⇒ t = 12 - p .... (1)

Second Situation :-

⇒ 10t + p = 10p + t + 54

⇒ 10t - t - 10p + p = 54

⇒ 9t - 9p = 54

Putting value of t from (1) we have,

⇒ 9(12 - p) - 9p = 54

⇒ 108 - 9p - 9p = 54

⇒ -18p = 54 - 108

⇒ -18p = -54

⇒ p = 54/18

⇒ p = 3

Substitute the value of p in (1) :-

⇒ t = 12 - p

⇒ t = 12 - 3

⇒ t = 9

So,

Number = 10p + t

= 10(3) + 9

= 39

Hence,

Required number = 39

Similar questions